Learning to Coordinate
Behaviours on a

Four-Legged Robot

T J Taylor

MSe Information Technology: Knowledge Based Systems
Department of Artificial Intelligence
University of Edinburgh
1993

Abstract

An algorithm has been developed elsewhere which enabled a six-legged robot to
learn how to coordinate its leg movements and walk with a statically stable g;a,lt
In the current project, the applicability of this algorithm to a four-legged robot
was investigated. A physical machine was constructed, along with a computer
simulation. There was insufficient time between the completion of the robot and
producing this report to test the algorithm on the physical machine, so the results
described apply to the simulation only. The basic finding was that the robot could
not learn how to coordinate its legs so that it never fell over. Several variations and
extensions of the basic algorithm were also investigated, some of which resulted
in a marked improvement in performance so that, in some cases, the robot would
only fall occasionally. To model the real robot more closely, some trials on the
simulation included a degree of noise in the leg movements. This was found to have
a (sometimes drastically) detrimental effect on the level of performance achieved.
Some reasons for the failure of the algorithm to satisfactorily translate from a six-
legged robot to a four-legged robot are discussed, and possible extensions, which

may lead to improved performance, are suggested.

Acknowledgements

I would like to thank my supervisor, Dr John Hallam, for his guidance and

encouragement throughout the course of this project.

Thanks also to Alasdair MacLean and Sandy Colquhoun for their patience and
advice while | was developing the code for the microcontrollers, and for producing

the printed circuit board for the robot.

I am very grateful to the members of the robotics laboratory at Forrest Hill
who contributed to the construction of the robet, especially David Wyse, Hugh

Cameron and Douglas Howie.

Finally, thanks to Dr Gillian Hayes for taking John's role while he was absent,

and especially for providing comments on the draft report in addition to John's.

I acknowledge receipt of SERC studentship number 92419031, which provided

financial support during my year of study.

Table of Contents

1. Introduction and Background to the Problem

1.1 What's Wrong with Wheels? oo
1.2 Previous Work with Walking Robots
T3 TAREREDY woene ws i wis @ o5 EE0K 0F SE B W R SIS0 N ¥
1.4 Why Use Four Legs?« o o o v i i i ittt s

2. The Learning Algorithm

2.1 Philosophy behind the Algorithm 0 o0
BB TIEBIIN. o owen won w o womos e wLee soe IS ST W NGE RURE E i
2.9 Contesl Strabesy o &u ooy 86 e v SR U8 B FR PR s @
24 Global Parameters . . woo v o oan on s 6 @ 06 050 0% 6
2.5 Differences from Maes and Brooks’ Algorithm

3. The Robot Design

31 Beqrernenls «. ¢ eu ves en saow O eee S0 o SeE B 8
St TIATHNADE w5 poww w foFve 0 OROR B EENY RS RN VIS B A
3.3 Soltware o e e e e e e e e e e e e e
33L "TheBlgoriflm: oo wn wdon o e wam B8 w6 W5 ® 4
332 “The Nhcyotontrollels v voon sa wes wom s swm o6 %

4. The Simulator Program

451 Wiy Wate: s Stmndabor® i vie D 56 o 509 10 W AR Be B 8
42 Pemigh . o von v v e e weweE B8 E W e 95 a0 B 4
A58 IPIEEREREIE. v 0 por wvw ww Ewen wp moe wEAnw e EIEE 3 E S
4.4 The Different Versions of the Simulator
4.5, Using the Similatorco von on s wn B8 $%09 B0 28y o3 0 .

4.51 QGetting Started o e e e e

$b2 The e o 95 S5F 5 55 599 o3 §9% 54 559 85
458 TheControl Panel: wou v on wan vos s s o % o as
454 The Behaviour Information Panel
4.6 Plotting Data from a Simulation Run
4,6.1 Feedback Percentages. oo o i
4.6.2 Relevanceand Reliabilityo v v v oi vn o0 o
168 Dehaviour SEEIEE v o v v v we m e meos B E
46.4 Monitoring Statistics00
4.6.6 Plotting Other Graphs i« v vv e v o e v e v

5. Experimental Design

B "Hard WA GillE oo vos oo wmm e mimm o9 % e sy 55 s
51.1 OnSmudgeo v vt vttt e e
Beled IeBmoudalion o s B e O AR PA B BN a0
5.2 Testing the Algorithm in Simulation, ..
SEY Basit THAlE v vovm s sowom wos s s o B smgE wE v
5.2.2 The Effectof Noise « v v v v v v vt v e ve e e e
6. Results
Bl “Hard-Wited Galts: ox oo woow ms o om e o% e B R a B
] R n e o Sevis ENENE SYF SLESE D9 BN G
6.1.2 InSimulation
6.2 Testing the Algorithm in Simulation,
BL. Bamt Taln oo ion e oo womos ses w0 s SIS aE dieT B0
6.2.2 Preprogramming the Behaviours. . . ., .. .,
6.2.3 Other Extensions
b.24 TheEfdect of Moise e o wan an o o @ o0 v ol
7. Summary and Discussion
7.1 The Original Goals of the Learning Algorithm, .,
72 The Results Obtained ¢ ¢ uun.,
7.3 Comparison of Preconditions Learned by Best Trials, .

iil

7.4 Some Reasons for Failure to Achieve Perfect Performance
7.5 Further Experiments with the Algorithm
7.6 General Comments about the Algorithm
T-T Possible Bxtensions . o v cs oo 5o a somm 5o s s

7.8 Relating Results to Other Research

Appendices

. Final Specification of Smudge

. Program Code for the Learning Algorithm
. Program Code for the Simulator

. Program Code for the Microcontrollers

v

69

i

78

91

98

List of Figures

Conceptualised Control Flow ..« v v« v v v sv oown v v o 50n v 11

A Quadruped Gait which obeys the Horizontal Balance Constraint . 14

3-1 Illustration of Smudge's Design 19
3-2 Schematic Ilustration of Microcontroller and Force Sensing Circuits 21
3-3 Photograph of the Finished Robot 22
4-1 Example Screen from the Simulator00 25
6-1 Graph of Feedback v. Timefor Trial A1 0.0 41
6-2 Graph of Feedback ». Timefor Trial B1 42
6~3 Graph of Feedback ». Timefor Trial C25 o0 o vy 43
-4 Graph of Statistics w. Time for a Behaviour from Trial C25 44
6-5 Graph of Statistics ». Time for a Behaviour from Trial C12 45
6—6 Graph of Feedback v. Timefor Trial C12 46
6-7 Situations Where Smudge was Liable to get Stuck During Learning 48
6-8 Graph of Feedback v. Timefor Trial PA6. 50
6-9 Graph of Feedback v. Timefor Trial PB1S 51
6-10 Graph of Feedback v. Time for Trial RA2 506
6-11 Graph of Feedback v. Timefor Trial RB2 a7
6-12 Graph of Feedback v. Time for Trial CC1 G0
6-13 Noise Distributions Used to Test the Robustness of Learning 61

List of Tables

2-1 Positive Feedback Statistics for each Behaviour T
2-2 Monitoring Statistics (Positive Feedback) 9
4-1 Summary of the Different Versions of the Simulator ar
4-2 Key to Behaviour Numbers used in the Simulator 30
4-3 Labels used to refer to Data from within MATLAB 33
5-1 Summary of Default Parameter Values Used in the Basic Trials . . 36
5-2 Summary of Basic Trials Performed on Each Version of the Algorithm 37
6-1 Preconditions learned by Version C, trial 28 44
6-2 Summary of Additional Trials Performed for Version C 45
6-3 Preconditions learned by Version C, trial 12 46
-4 Preconditions Preprogrammed into Version A, trial PA1S 47
6-5 Preconditions Preprogrammed into Version C, trial PCI 52
6-6 Default Parameter Values Used with Extensions to Algorithm . ., . 52
6-7 Preconditions learned by Version A, frial RA2 a5
6-8 Preconditions learned by Version B, trial RB2 57
6-9 Preconditions learned by Version C, trial CC1 59
6-10 Preconditions learned by Version C, trial NCC1 63

Vi

Chapter 1

Introduction and Background to the
Problem

1.1 What’s Wrong with Wheels?

The vast majority of work with mobile robots conducted to date has concentrated
on machines equipped with wheels. This is not surprising, as wheels and driving
motors are readily available to suit almost any size of robot, and wheeled locomo-
tion is relatively easy to control, and entirely adequate for transporting a robot

around a laboratory floor.

However, if we want our robots to emerge {rom their sanitized play-pens and
step (or wheel) out into the ‘real world’, then wheeled locomotion becomes more
problematic. In situations involving rough terrain, patches of ground which are
unable to support the weight of the vehicle, the need to negotiate stairs and so
on, wheeled systems come a poor second to those with legs, i.e. legged animals.
(Another advantage of legged systems over those with wheels, often quoted in
texts on legged machines (e.g. [Raibert 86]), is that legs provide a form of active
suspension, or decoupling of the motion of the legs and body. However, there is
no reason why wheeled machines cannot be fitted with active suspension. In fact,
over the past few years, much work has been devoted to this topic in the motor

car industry.)

1.2 Previous Work with Walking Robots

As early as the 1890s, several designs were proposed for walking machines con-
trolled by mechanical linkages, but there is no evidence that any of these were
actually constructed. By the 1950s, a more systematic approach towards the
study of legged machines was emerging, leading to the creation of several dozen
experimental systems by the 1980s. These systems varied in the number of legs

used, but most had one, two, four or six legs. For a review of these machines, see
[Song & Waldron 89] or [Todd 85].

In the early 1980s, some fairly sophisticated designs were produced. [Hirose 84]
describes work on a four-legged machine which walked with a dynamically stable’
gait. The robot could negotiate obstacles while maintaining a horizontal body
orientation, and was also much more energy efficient than previous walking ma-
chines. Raibert and colleagues devoted much research to the area of hopping
machines, and successfully constructed examples with one, two and four legs (see
[Raibert 86]).

While many machines exhibited competent performance in the laboratory, none
can really be said to have been of practical use or to possess all of the abilities

that legged animals display.

One reason for this lack of performance is the relatively low level of development
that has gone into the mechanical design of the legs—the designs used fall a long

way short of achieving the flexibility and robustness of animals’ legs.

Another major reason is the complexity of the control systems that these ma-
chines were utilising to move their legs. The machines built up to this point were

all designed around the classical ‘sense-think-act’ cycle of control, in other words,

LA ‘dynamically stable’ gait is one in which the vehicle is not stable at every point in
its cycle, but the body may tip and accelerate for short periods of time. However, over
time, tipping motions in one direction are compensated for by tipping in the opposite
direction, and an effective base of support is thus provided. All forms of running are
examples of dynamically stable gaits.

their architectures were decomposed into functional modules, such as perception,
modelling and planning. Such control systems require an explicit internal represen-
tation of the mathematical equations relevant for legged locomotion and balance.
The more robust the required performance of the robot, the more complex and

detailed the equations.

Since the mid-1980s, a paradigm has emerged to rival this classical approach
to constructing robot architectures ([Brooks 91b] gives a comprehensive introduc-
tion). Pioneered by Rodney Brooks at MIT, this new approach involves breaking
down the problem of building a robot into behavioural, rather than functional,
modules. The task of designing a robot to achieve a particular task then proceeds
by first equipping the machine with a small number of very simple behaviours,
and gradually building up new, more complex behaviours on top of the simpler
ones until the required level of behavioural competence is reached. Brooks called
this approach the subsumption approach, as lower level behaviours are subsumed
by higher level ones. Subsumption-based designs lack the central processing path-
ways of their classical counterparts, tending to evolve with a large number of fairly

low-level, localised connections between sensors and actuators.

In 1989, Brooks published the results of applying this new approach to robot
design to a robot with six legs, called Ghengis ([Brooks 89]).

1.3 Ghengis

The original Ghengis was a small (25 x 35cm) robot with six legs, each with two de-
grees of freedom (up/down and forward/backward). Each leg was controllable by
two orthogonally mounted model-airplane position-controllable servo motors. The
control architecture which originally drove Ghengis, as described in [Brooks 89],
allowed the robot to acquire a robust walking behaviour through a process of incre-
mentally expanding its repertoire of behavioural competences (i.e. a subsumption

architecture).

The completed system did indeed show a robust walking behaviour, being able
to stabilize pitch and roll, walk over obstacles and steer towards infrared sources.

However, such a design procedure is, to some extent, unsatisfactory, relying heavily

on the designer having a good insight or ‘feel’ for what competences to give the

robot, and at which level.

In later experiments using essentially the same hardware, Pattie Maes and
Brooks ([Maes & Brooks 90]) took a different approach to enabling Ghengis to
walk. They designed an algorithm which allowed the robot to learn on the basis of

positive and negative feedback when to activate any of its repertoire of behaviours.

For Ghengis, positive feedback was provided by a trailing wheel which detected
forward movement, and negative feedback by two touch sensors on the robot's
belly. In the simplest case, Ghengis was equipped with just six behaviours which
it had to learn to coordinate; a ‘move forward’ behaviour for each of the six legs
(i.e. move leg up, forwards then down), coupled with a global horizontal® balance
reflex (i.e. if one leg is moved forward, then all the others are moved back a little).
The task of the learning algorithm was to decide under which conditions each

behaviour was relevant and reliable to produce a stable walking movement.

When implemented, Ghengis was able to learn an alternating tripod gait® in
between 10 minutes and 12 minutes, depending on the particular version of the
learning algorithm. However, the walking competence learned was not as robust
as that produced using the ‘hard-wired’ subsumption architecture. Ghengis could
only walk in a straight line on a smooth surface; it could neither turn nor negotiate

obstacles.

Nevertheless, the basic idea of using a learning procedure, rather than a hard-
coded architecture, to produce the desired walking behaviour still seemed like a

more promising approach in the long run, so I decided to further investigate Maes

and Brooks’ algorithm in this project.

**Horizontal refers to the angle by which each leg is displaced in the horizontal plane

(forward /backward), as opposed to its *vertical’ angle (up/down).

*An alternating tripod gait for a hexapod is one where the front and rear legs on
one side and the middle leg of the other side move in synchrony, in antiphase with the
other group of three legs. There are always at least three legs on the ground, providing
a tripod lor supporf. Thus, the robot is stable at all times — it is a *statically stable’
gait.

1.4 Why Use Four Legs?

There are several ways in which the learning algorithm used with Ghengis could
have been further explored and expanded. For example, one could have tried to
have incorporated some of the other competences that the ‘subsumption-based
Ghengis’ possessed, such as being able to turn corners or climb over obstacles.
Rather than this, however, I decided to explore the applicability of the algorithm

to a robot with a different number of legs.

Specifically, I chose to investigate whether the algorithm could be applied fo \a
four-legged robot. | chose fewer than six legs because it is theoretically harder to
control a robot with fewer legs in such a manner that it is stable at every point
in its gait (that is, it is harder to produce a ‘statically stable’ gait). As explained
in [Todd 85] (p. 61), “The alternating tripod gait [that Maes and Brooks observed
emerging on Ghengis] ... is particularly important for walking robots, and accounts
for the prevalence of six-legged machines. Six is the smallest number which always
provides a tripod of support even when half the legs are raised. It therefore allows

reasonably fast walking, while maintaining static stability at all times.”

Note that the development of a quadruped with a statically stable gait is of
little interest per se, as such a gait 1s only a very special case of all possible gaits
available to a quadruped, and would not allow it to walk particularly fast, let
alone run. However, from the perspective of investigating the applicability of the
algorithm to a quadruped, such a gait is the easiest it could be expected to learn.
Only when this task has been successfully achieved will it be appropriate lo look

al more complicated gaits.

This chapter has given a brief introduction to my project and some background
to the problem that I have tackled. In the next chapter I describe in detail the

learning algorithm used.

Chapter 2

The Learning Algorithm

2.1 Philosophy behind the Algorithm

As discussed in the previous chapter, Maes and Brooks wanted to explore ways
of developing robot control architectures which did not invelve manual design.
Even simple systems can require a fairly complicated switching circuitry among
selectable behaviours, and it was envisaged that the creation of such circuitry for

more complex robotic systems would be too difficult for a human designer.

Maes and Brooks also wanted to produce a system which could continuously
monitor its performance and adapt its behaviour should the environmental condi-
tions in which it found itself change. For example, a robot which had learned how
to walk on smooth ground should not be stumped when it comes across its first
obstacle, Rather, it should be able to learn how to get around this obstacle, if
necessary by altering some of the knowledge that it has already acquired. This is
in contrast with the types of control system which had been built up to this point,
which were hard-wired into the robot by the designer when finally implemented,

and were therefore not actively adaptable.

As stated in [Maes & Brooks 90] (p. 796}, “In accordance with the philosophy
of behaviour-based robots, the learning algorithm is completely distributed. There
is no central learning component, but instead each behaviour tries to learn when it
should become active." In factl, this is not true for all of the behaviours used; see

the comments about the ‘horizontal balance behaviour’ in the following sections. In

active | not active

positive feedback i Ik

no positive feedback 1 m

Table 2—1: Positive Feedback Statistics for each Behaviour

the next three sections I will describe the original version of the learning algorithm
as used by Maes and Brooks. To be implemented on a four-legged robot, it was
necessary to make a number of small changes to the algorithm. These changes are

listed in the final section of the chapter.

2.2 Design

The robot is equipped with a set of behavioural primitives, and the task of the
algorithm is to determine, on the basis of global positive and negative feedback
signals received during learning, under what conditions each behaviour should be
activated. The conditions that the algorithm monitors in order to achieve this task
are related to the state of each leg. For Ghengis, there were just six conditions

involved; namely, whether each of the six legs was up or down.

In the first experiment described in [Maes & Brooks 90], there were only six
behaviours to be coordinated; a swing-leg-forward behaviour (L.e. move a leg
up, forward, then down again) for each of the six legs. There was also a global
‘horizontal balance' reflex hard-wired into the robot, which sums the horizontal
angles of the legs and sends a correction to all of the legs so as to reduce that sum
to zero, This has the effect that, if one leg is moved forward, then all the other
legs are moved back a little. This action was hard-wired into Ghengis rather than
having to be learned. For this reason, I will refer to it as the horizontal balance

reflex rather than behaviour.

Each learnable behaviour has two sets of statistics associated with it, which
record how frequently positive and negative feedback signals are received when
the behaviour is active and inactive. Table 2-1 shows the statistics for positive

feedback — a similar set is maintained for negative feedback.

FEach cell in the table of statistics is a count of how many times that particular
combination of circumstances has been observed. Each cell is given an initial
value, N, at the beginning of a run, and is incremented whenever that particular
situation occurs. At each time step, whether the cell has been incremented or
not, its value 1s decayed by F% so that its maximum value is always N. In this
way, the effect of more recent experiences dominates, while statistics from less
recent experiences die away. The algorithm can therefore cope with changes in its
experienced environment; anything that is learned can later become unlearned if

no longer appropriate for optimising the expected feedback signals.

Two measures of each behaviour's current performance are calculated from
these statistics throughout the execution of the algorithm. One measure is the
relevance of the behaviour, which is calculated as follows. The Pearson product-
moment correlation coefficient between positive feedback and the activity of the
behaviour is calculated with the formula
jem—lxk

corr(P, A) = ——m——mumteoao— ’
(mADs(m+E)«(j+E) =+

This gives a number between +1 and -1, indicating how strongly the action of the
behaviour is correlated to receiving dirvect positive feedback. The corresponding
coefficient for negative feedback, ecorr{N,4), is calculated in the same way. The

relevance of the behaviour is then defined as
relevance = corr(P, A) — corr(N, A)

which is therefore a number in the range +2 to —2. The control strategy of the
algorithm is such that the more relevant a behaviour iz, the more likely it is to be

activated.

The other measure calculated from the stalistics is the reliability of each be-
haviour. This gives an indication of how consistently positive (or negative) feed-
back is received when the behaviour is active. Reliability is defined as

jp !p jn IE‘-|rr,
- P maxi - P
Jotlp .?p‘i'IP}T {.?n‘f'fn Jn+!n)]

where the p and n subseripts reler to the statistics relating to positive and negative

reliability = min{maz(

feedback respectively. Reliability values range from 0 fo 1. A highly relevant

behaviour may still have low reliability if neither positive nor negative feedback is

condition on | condition off

positive feedback n o

no positive feedback P q

Table 2-2: Monitoring Statistics (Positive Feedback)

received on the majority of occasions when it is active. The algorithm therefore
uses the reliability of each behaviour to decide whether the behaviour should try

to improve its performance.

Each behaviour which has not reached a certain threshold of reliability will try
to improve its performance by changing the list of perceptual preconditions which
need to be fulfilled in order for that behaviour to be activated. This is achieved
by monitoring a new perceptual condition while the behaviour is active to see
whether it is correlated to positive or negative feedback. If a strong correlation is

observed, then the condition 1s adopted on the precondition list.

When a behaviour starts moniforing a condition, it initialises two sets of statis-
tics, one relating to positive feedback (see Table 2-2), the other to negative feed-

hacl.

From these statistics, the correlation between a condition being on and positive
feedback being received (while the behaviour monitoring the condition is active)

may be calculated:

corr(P, on) ORI . i s A

(g+p)*(g+o)*(n+o)*(n+p)

The correlation between the condition being on and negative feedback,

corr(P, off), is calculated similarly.

If, after some time monitoring the condition, a strong positive correlation is
observed between that condition being on and receiving positive feedback (or neg-
ative feedback), then a new precondition stipulating that this condition must be
on (or, for negative feedback, that it must be off), is appended to the existing
precondition list for the behaviour. Similarly, if a strong negative correlation with
positive (or negative) feedback is observed, then a new precondition stipulating
that the condition must be off (or, for negative feedback, that it must be on), is

appended to the existing precondition list. Having adopted a new precondition,

the behaviour may still not have reached the criterion reliability target — if this

is the case, it will continue monitoring further conditions.

If no correlation is observed after a certain duration of monitoring, then the
behaviour will start monitoring ancther condition. The list of conditions to be
monitored is circular, so that conditions already on the precondition list may be

re-evaluated, and, if necessary, discarded.

2.3 Control Strategy

The algorithm places the behaviours into groups which control the same legs. At
each time step, it is ascertained which behaviours in each group are eligible to
become active, i.e. those which are not already active but have all preconditions
tulfilled. One or zero of these eligible behaviours from each group are then chosen,
probabilistically, to be activated. The likelihood that a behaviour will be chosen

depends, in order of importance, upon its

1. relevance relative to other selectable behaviours

o

reliability

3. “interestingness”. This relates to the case where the behaviour is monitoring
a condition. If the current situation (the condition being on or off) has
been experienced less than other situations, then it is deemed to be more

interesting.

The control loop of the algorithm is illustrated in Figure 2-1. This process
continues indefinitely, and behaviours will continue to monitor new conditions if
they are not reliable enough. If the robot falls over at any stage, i.e. negative

feedback is received, then all the legs are returned to their initial position.

10

START
Initialise Leg Positions

Initialise Statistics and Precondition List for each Behaviour

MONITOR ‘I’ 1’
POSITIVE AND —=| Group 1 Group 2 | Groupn
NEGATIVE determine | determine | and so
FEEDBACK selectable | seleciable on for
l behaviours | behaviours | other
Update Statistics for for Group 1|for Group 2| groups
each be.;laviuur
MNew Statistics =
/ Is Behaviour n reliable? /— YES—= Group 1 Group 2 Group n
NID select 1 or Ogelect 1 or () and so
of these and|of these and| on for
Monitor a New Condition el | Seuviedl Oner
for T time-steps sl
MNew Precondition List

Figure 2-1: Conceptualised Control Flow

11

2.4 Global Parameters

There are a number of global parameters associated with the learning algorithm:

e how strongly a condition must be correlated to feedback before it is adopted

as a new precondition for a monitoring behaviour
e the duration for which a condition is monitored before it is dropped
e how reliable a behaviour should try to become

o how adaptive a behaviour is, i.e. the relative importance of new data versus

data from past experiences

These parameters must be fine-tuned for a particular robot and environment in

order to optimise the performance of the algorithm.

2.5 Differences from Maes and Brooks’ Algo-

rithm

The algorithm as deseribed in the preceding sections is the version used by Maes
and Brooks with their Ghengis robot. In order for it to work on a robot with only
four legs, it was necessary to make a number of slight alterations. These are listed

below.

o The condition vector. The algorithm used with Ghengis only dealt with
six conditions — whether each of the six legs was raised or not. This was
sufficient for a six-legged machine walking with a tripod gait, because the
coordination between the two groups of three legs does not particularly re-
quire knowledge of whether any of the legs are forwards or backwards — it
i5 a sufficient precondition for one group of three to be raised that the three

legs in the other group are all on the ground.

12

However, for a quadruped, an analysis of the types of statically stable gaits
possible reveals that a much tighter coordination is required between the
legs. Specifically, if each leg is to learn when it should raise itself and swing
forward, it appears essential that it should know not only whether the other
legs are up or down, but also whether they are forwards or backwards, With
this in mind, I added eight new conditions to the existing four leg up/down
conditions; a leg forward and a leg back condition for each of the four legs.
The angles by which a leg must be moved forwards or backwards to frigger

these two new conditions were specilied by two new parameters.

Global Horizontal Balance. As already quoted, [Maes & Brooks 90] (p. TQEWJ
claim that “in accordance with the philosophy of behaviour-based robots,
the learning algorithm is completely distributed. There is no central learning
component, but instead each behaviour tries to learn when it should become
active.” It therefore seems strange that they should include this ‘hard-wired’

‘global’ horizontal balance reflex in their system.

On top of this, it is less infuitive that such a behaviour is appropriate for
a quadruped than it is for a hexapod—during an alternating tripod gait
on a hexapod, three legs move forward as the other three move back, so
that the total horizontal angle will always be zero—there is no such obvious

symmetry in a statically stable quadruped gait.

In fact, an analysis of quadruped gaits shows that there is a statically stable
arrangement where the total horizontal angle is always zero, as illustrated
in Figure 2-2, This gait is a special case, however, requiring one leg to be
raised as soon as the previous one has been lowered, so that all four legs are

on the ground for only a brief portion of the gait cycle.

It seemed unwise to restrict the system in this manner, so, as well as ex-
perimenting with the horizontal balance method, I also decided to look into

other ways of moving the legs backwards. Two alternatives were tried:

— A Global Move-Leg-Back Reflex. Like the horizontal balance reflex, this
acted globally, and was hard-wired into the algorithm, i.e. it was active
all the time rather than having to be learned. Unlike the horizontal

balance reflex, there was no summing of horizontal angles. Rather,

13

(a) Angular Positions of Leps in Horizontal Plane during one Gait cycle

w\
FRONT LEFTLEG D t \/ d
ks

FRONT RIGHT LEG ﬂ\i/ F \\\
REAR LEFTLEG 0 \\//\

TOTAL. 0

a3

{b) Footfall Disgram for the same Gait

FRONT LEFT LEG

FRONT RIGHT LEG

BEAR RIOHT LEG

HEAR LEFT LEG

]

Figure 2-2: A Quadruped Gait which obeys the Horizontal Balance Constraint

each leg which was on the ground was just moved back by some fixed

angle, regardless of the positions of the other legs.

— Learnable Move-Leg-Back Behaviours. In keeping with the idea of hav-
ing a truly localised learning algorithm, this method required each in-
dividual leg to learn when to move backwards in exactly the same way
that it had to learn when to swing forwards. Thus, in this version of
the algorithm there were eight learnable behaviours, and no hard-wired

reflexes.

o Definilion of ‘Interestingness’. The notion of interestingness was described
in [Maes & Brooks 90], but was not formally defined. In my work I adopted
the following definition {refer to Table 2-2). The interestingness relating to

statistics for positive feedback is defined

— i monitored condition on and n+p<o-+gq

nfatptyg
int, = ﬁiﬂ if monitored condition off and o+ g <n+p
0 otherwise.

The first case is for situations where the condition is on, but the total number
of times that it has previously been on, (n + p), is smaller than the total
number of times when it has previously been off, (o + ¢). Similarly, the
second case is for situations where the condition iz off, but the total number
of times that it has previously been off, (o + ¢), is smaller than the number
of times that it has previously been on, (n 4+ p). All other situations are

deemed to have an interestingness value of zero.

The interestingness relating to statistics for negative feedback, int,, is de-
fined similarly,

The maximum of these two values is taken as the overall interestingness of

the situation:

interestingness = Maz(int,, int,)

o Balance between Relevance, Reliability and Inferestingness when choosing a

which Behaviours to Activate. Again, this balance was not formally defined

15

in [Maes & Brooks 90], although it was stated that when choosing a be-
haviour for a group, the relative relevance of the selectable behaviours had a
greater influence than their reliability, which in turn had a greater influence

than their interestingness.

In my work, I scored each behaviour according to

secore = 2 % {(2 + relevance) + reliability} + interestingness

which was therefore a number between 0 and +11.

To decide which, if any, of n selectable behaviours to pick, a roulette wheel
selection method was used, with a wheel size of 11n'. If the wheel stopped

in the region 3 .;_; score; to 11n, then no behaviour was activated.

The code for the algorithm as used with the simulator is listed in Appendix B.

'That is, an imaginary roulette wheel is created, with total area 11n (which is the
maximum possible total score of n behaviours). Each behaviour is allocated a sector of

the wheel of area equal to its score. Thus, the total area of the wheel used for these
allocations is ¥.0; score;.

16

Chapter 3

The Robot Design

The previous chapter described the learning algorithm used for this study. The
idea was that this would be tested using both a simulation of a four-legged robot,
and a physical machine. This chapter describes the considerations that went into

the design of the latter, and details the hardware and software design.

3.1 Requirements

The robot, called Smudge, was based upon the design of Ghengis. In order to be
suitably controlled by the learning algorithm, the following requirements had to

be met:

e Each of the four legs must be independently position-controllable in the

up/down direction and in the forwards/backwards direction.

o There must be some mechanism for providing a positive feedback signal when

the robot is moving forwards.

o There must be some mechanism for providing a negative feedback signal

when the robot falls over.
There were also some more practical considerations, such as:

o A low weight, to keep hoth the torque required from the servos, and the

driving power required, to a reasonable level.

17

e Rigidity. The legs had to be strong enough to support the robot’s body

without bending.

e Ease of construction. The finished robot was required in a fairly short space

of time.

3.2 Hardware

Much of Smudge’s design (e.g. the configuration of the servos to drive the legs in
two orthogonal directions, the use of a trailing wheel etc.) was adopted directly
from Ghengis. The detail of the mechanism for providing negative feedback was
slightly modified, as described below. An additional feature was the inclusion
of force-sensing circuits — one for each servo — to provide information about
how much current each servo is draining. Although this is not required for the
present algorithm, it was included for future expansion of the system (see the
Software section below). I developed the physical design of Smudge to a level
shown in Figure 3-1. The staff of the department’s mechanical workshop were
largely responsible for more detailed design considerations and for the construction

of the robot.

The finished robot weighed approximately 500 grammes, so there was no prob-
lem in finding servos which could exert sufficient torque to support the body.
However, some care was needed in the decision of which servos to use, as the mod-
els available had a variety of weights as well as torques. Thus the choice of servo
affected the overall weight of the robot, which affected the torque required. A
number of combinations of servo were considered on paper. The two models cho-
sen afforded the greatest excess of torque over what was calculated to be necessary

so that two legs could support the total weight of the robot.

The wvalues of the resistors in the force-sensing circuits were chosen so that,
when the output of the operational amplifier was fed back into the microcontroller,

the analogue-to-digital converter covered a reasonable range of input values.

Positive feedback signals were provided by a Hall Effect sensor attached to a

Lrailing wheel which was dragged along the ground as Smudge advanced. Negative

18

TOISS T OART P15 [OAL3E
SN Ul SR [y

ey £pae] poos BSeG

Ty e

udisaq [eurg
wADANNS.,

s Design

=1: Ilustration of Smudge
19

Figure 3

feedback signals were provided by two microswiitches, mounted front and rear,
which were triggered by curled wire ‘feelers’ if Smudge fell on its belly (see inset in
Figure 3-1 for details). The feelers were to prevent damage to the microswitches
when Smudge fell over, by enabling them to be mounted on top of the body rather

than on the underside.

The eight servos were controlled in two groups of four by a couple of PIC
16C71 8-bit microcontrollers. The microswitches and Hall Effect sensor were also
connected to the microcontrollers. The final circuit is illustrated in Figure 3-2.
There is one free pin on Port B of one of the PICs, which may be used for input

or output purposes in future versions of the system.

The PICs had three digital channels of communication to the ‘Brain Brick’
board, which was designed in the Al department in Edinburgh and is usually
used to control Lego robots. This board is programmable in C, so that most of
the algorithm code developed for the simulator (described in Chapter 4) could be
directly transferred onto the real robot.

The board containing the microcontrollers was mounted on Smudge’s body. An
umbilical cable connected this board to the Brain Brick (which was not mounted
on Smudge), and also supplied power to the robot. A photograph of the finished
robot is shown in Figure 3-3. Note that the microcontroller board is mounted on
Smudge’s underside in the photograph. This was just a temporary arrangement
— it will normally sit on top. Also, the wire feelers attached to the microswitches

had yet to be curled under the body.

3.3 Software

3.3.1 The Algorithm

The software to implement the learning algorithm was written in C, which could
be used for both the simulator and the real robot. The code for the algorithm, as

used with the simulator, is shown in Appendix B.

As Smudge was only completed in late August, there was insufficient time to

implement the algorithm on it before the completion of this report. However, as

By Bl reriional
crinmitie st Ek

Al " - \
RA
A 5 o 2
;] W

A “ AL

FIC 16T Wi

L
L
mn

L L] &
1 "]
R =iy
']]

r

AN f— i —
T Feve
o o
3 4
2=l

B
Ra% Rl
72
T Fonl T T T " | e T
1 ¥y Fanl Fan P
T
B
All Microcontroller #2 connections (including connections to Servos 5,6, 7 & B) Bervo 1,2,5,6: FP-5143
are identical to those for Microcontrobier #1 unbess etserwisa indicated {noto that Serve 34,780 53101
these fs no connection topin 11 of Misrecontrofler 42), RL: 1M0
R2: 1 KO
Ra: 100 m £
Rd: 10 K2
Cl; 1wl

Figure 3-2: Schematic Illustration of Microcontroller and Force Sensing Circuits

Figure 3-3: Photograph of the Finished Robot

already mentioned, the Brain Brick is programmable in C, so that the majority of -

the algorithm code for the simulator can be transported directly. The only changes

required are concerned with input of data from sensors, and output to the servos.

3.3.2 The Microcontrollers

The PIC 16C71 microcontrollers are programmable in a RISC-like assembler lan-
.guage. At the time of writing, they had just been programmed to control the
servos directly, without any connection to the learning algorithm (see Appendix D

for code).

Code for reading values from the force-sensing circuits attached to the servos,
using the analogue-to-digital conversion facilities of the PICs, has also been tested
{(see Appendix D). There is no use for this force-sensing information in the present
algorithm, but the facility was included should it be necessary, in future work with
Smudge, to know when the servos were draining unusually high currents (indicating

that their movement was being impeded, perhaps by an obstacle).

[K]
[£N]

e R =

In order to be linked up to the learning algorithm, additional code must be
written to monitor the microswitch inputs (via pin RBO on each of the PICs)
and the Hall effect sensor (pin RBS on the rear PIC). This information may be

transmitted to the Brain Brick via the three-line communications link.

The communications protocol employed must allow for bidirectional transfer,
as the Brain Brick must also send the microcontrollers positional information for
each of the servos. The servos require a signal to indicate their desired position
every 20ms, whether or not this position has changed. It is envisaged that the
algorithm code will communicate to the microcontrollers each time a change in
position for a servo is required, and the program on the microcontrollers will
maintain the appropriate signal to the servo until it receives the next change of

position command for that servo from the algorithm.

It will be a fairly simple task to modify the existing code shown in Appendix D

to meet these requirements, and should only require a few days’ work.

Chapter 4

The Simulator Program

4.1 Why Write a Simulator?

As no previous practical work has been done in the department concerning robots
with legs, a four-legged machine had to be designed and built as part of the
project. Because such tasks often take longer to complete than originally planned,
and considering the fact that a simple simulation program could be written in a
matter of weeks, it was decided that the early work with the algorithm should be

done using a program to simulate the robot.

The idea was that work would continue with the simulator until the physical
robot was complete, and attention could then be switched to this. As is turned
out, the robot was not completed until late August, so that all of the work with

the learning algorithm was done using the simulator.

However, an attempt will be made after the completion of this report to pro-
gram a ‘hard-wired’ statically stable ripple gail into the robot, in order to demon-

strate that the goal of the learning task is achievable on the physical machine.

[Smusfqn Simalsler S A e SR A i R e ik b =
(Tult) EEMAVIOUR G BENAVIDUR 1:
FrocosdHioss Momllorlrg Clxk Prcendfiang Haonbering Chack
e e Tl L AT o IZF LG0T]
EEHAVIOUR 30 EEHAVIDUR 33
Noar Laft Froat Lot Bracanditbans Henlraring Chsch Froconditions Hionftorlng E-CL
alphn 3 [EF) alphn 22 [V0T wE 2 LYFT, LI F, LZUF a
[Bown T un | [Dgwn] tn |
foar Right Freait Nkghe
alphn =24 [a[¥] alpba =33 [&[=]
[mewn Tun] [Dewn T un]

bota opgles: down = 30, ap==18

Elapsad tbme—stops ¢ 5898

£ posltion fondbach: 96
* ragoiiva foodbsck: 7 -

Distane travallod (gmd
an weg | ABE
an =gl 45

Senudge Is skahie

Figure 4-1: Example Screen from the Simulator

4.2 Design

The simulator code was kept as separate as possible from the code for the learning

algorithm. This was so that the latter could be transferred onto the physical robot

with minimal alterations.

The only interaction between the two programs occurs in the function ‘animate’
in the simulator code (see Section 4.3 below, and Appendix C). This contains a
call to the ‘next_time.step’ function from the algorithm code (Appendix B), which
runs the algorithm for one more time step and returns the robot’s new position,

together with information regarding its margin of stability.

A sample screen-shot from the simulation is shown in Figure 4-1. Smudge is
represented by a two dimensional line drawing of the view looking down onto the

robot. Raised legs are represented by dotted lines.

The simulation contains an accurate model of the dimensions and leg-servo
offsets for the robot (this is why, on the simulation, the legs do not always seem
to originate from the body — the servos are not drawn on the screen). From this

information, for any given set of angles for the servos, the program can calculate

whether Smudge is stable., The calculation assumes that the robot would be stable
if the projection of its centre of mass (which was assumed to be the centre of the
body, represented by a small cross on the simulator) onto the plane of the ground
lies within the polygon of support provided by Lhose legs which are on the ground.
To enhance the visualisation of the margin of stability afforded, the boundary of
this polygon of support which lies closest to the centre of mass is represented on

the screen with a dotted line (see Figure 4-1).

Further details about the display are given in Section 4.5.

4.3 Implementation

The simulator was written in C, with a user interface programmed with XView.
The code for the simulator is listed in Appendix C. At regular intervals during
the execution of the algorithm, summary data relating to the state of the system
at that point are output in ASCII flat-file format to a file called ‘data.out’. The
file is closed when the user quits the simulator. This data file is suitable for use
with MATLAB, and a suite of M-files have been written to speed the plotting
of graphs of the most important data. These files may be found in the directory
simulator/data/? (the ‘data.out’ file is also written to this directory). The use of

these programs is described in Section 4.6.

IThe first two lines of the file, which contain information about when the file was
produced, must first be deleted.

ZAll file paths referred to in this report are relative to the installation directory
“project/".

Name | Descriplion

sim | Learning algorithm with a global horizontal balance reflex.

siml | Early version of simulator preprogrammed with the desired walking
pattern to demonstrate the goal of the learning algorithm. (The be-

haviour is hard-wired in this version, and no learning occurs.)

sim2 | Hard-coding of a statically stable walking pattern using the global
move-leg-back reflex to demonstrate that the desired gait is also pos-
sible in this case. As with siml, this version is not connected to the

learning algorithm.

sim8 | Learning algorithm with the global move-leg-back reflex.

sim4 | Learning algorithm with four extra learnable move-leg-back behaviours,

and no global or hard-wired reflexes.

Table 4-1: Summary of the Different Versions of the Simulator

4.4 The Different Versions of the Simulator

There are several different versions of the simulator, as summarised in Table 4-
1. sim, sim3 and sim4 are versions which are linked to the learning algorithm,

whereas sim1 and sim2 contain preprogrammed walking patterns to demonstrate

that the goals of the algorithm are achievable. The display for all of the versions
involving the learning algorithm is the same, except that sim4 has information

regarding eight behaviours rather than four.

4.5 Using the Simulator

4.5.1 Getting Started

The code for the simulator is in the directory “simulator/”. Before running the
program, the following command must be given to set some environment variables

so that the XView facilities can be accessed:

a source smudge

The file ‘smudge’ contains the necessary export commands. The simulator may

then be invoked with the command:

e sim

Other versions may be invoked similarly, using the commands sim1, sim2 etc.

4.5.2 The Canvas

The canvas contains a display of Smudge in its eurrent position, as described in
Section 4.2. The face indicates which end is the front, and the cross indicates I;]:;e
presumed centre of mass, as used in calculations. At each time step, the distance
that Smudge advances along the x and y axes is taken to be the average distance
moved in these directions by each of the feet currently on the ground. Whenever
Smudge wanders off the edge of the canvas, it is redrawn at its starting position

towards the left of the window.

4.5.3 The Control Panel

The control panel is situated on the left-hand side of the window.

The execution of the simulation is controlled by the Siart and Stop butfons
in the top left-hand corner of the window. The user may exit the simulation by
pressing the QJuit button. The speed at which the simulation runs can be controlled
via the shder just under these buttons. At speed 0, the user may step through the
algorithm one time step at a time, by repeatedly pressing the Start button.

In the centre of the control panel there is a display of the position of each leg.
The alpha angle®, or the angle that a leg is displaced in the horizontal plane, is

shown and may be changed by the user at any point to any integer value in the

3An alpha angle of zero corresponds to the leg being perpendicular to the side of
the body. Because of the way that the servos were arranged, it was decided to use the
convention that a positive alpha angle refers to a forward displacement for the {ront legs,
but to a backward displacement for the rear lags.

28

range —45 to +45. Below this there is a display to show whether the leg is up
or down — this may also be changed by the user. At the bottom of this middle
section of the panel is a message displaying the beta angles for the simulation, i.e.
the angles of displacement in the vertical plane which correspond to a leg being
up or down. These angles are not adjustable by the user in the current version of

the simulation.

Below this section is a set of information about how well the current run is
progressing. The first figure is the number of time steps that have elapsed since
the start of the present run of the simulation, i.e. how many times that algorithm
has repeated its basic control loop (see Figure 2-1). Below this are figures for
the percentage of positive and negative feedback received. Note that these figures
refer to the preceding 200 time steps, and not to the entire run, so that any change
in performance may be more readily noticed, Finally, figures are given for the
distance travelled along the x-axis (forwards and backwards) and the y-axis (from
side to side). These numbers are given in centimetres, as calculated using the

dimensions of the real robot.

There is a message at the bottom of the panel to say whether Smudge is stable
or not. As explained earlier, when it is standing on three legs, there is also a
dotted line drawn between two of the legs to indicate how stable that position is.
If Smudge is unstable in that position, then the dots are drawn closer together to

emphasise that fact.

4.5.4 The Behaviour Information Panel

This i1s placed at the top right of the window.

The behaviours that individual behaviour numbers refer to are listed in Ta-
ble 4-2.

For each behaviour, a list of its current preconditions is displayed. Each pre-

condifion is represented as a four-character string of the form Layz, where z is a leg

29

Behaviour Number | In sim and sim3 In sim4

0 swing leg 0 forward | swing leg 0 forward

1 swing leg 1 forward | move leg 0 backward
2 swing leg 2 forward | swing leg 1 forward

swing leg 3 forward | move leg 1 backward

- swing leg 2 forward

= move leg 2 backward

- swing leg 3 forward

=] | S [am | = | 22

- move leg 3 backward

Table 4-2: Key to Behaviour Numbers used in the Simulator

number between 0 and 3 *; y is either U for up, F for forward, or B for backward;

and zis either T for true, or F for false.

When a behaviour is monitoring a condition, then this condition is displayed,
according to a similar code, under the Monitoring column, and the number of
time steps for which the monitoring has been in progress is shown under the Clock

column,

4.6 Plotting Data from a Simulation Run

As mentioned earlier, the data file from & run of the simulation, called ‘data.out’,
together with MATLAB M-files for plotting the data, can be found in directory
simulator/data/. Before using MATLAB, the first two lines should be stripped
from the data file. Once in MATLARB, the command

o load data.out

will load in the data, The columns of data must then be tagged with names so
that they can be referred to by the plotting utilities or by the user.

"Leg 0 is the front left leg, Leg 1 the front right, Leg 2 the rear right, and Leg 3 the
rear left.

30

For sim and sim3, which both have four learnable behaviours, data is written
to the output file every ten time steps. To name the columns of data produced by

either of these, type
e simplot

This runs an M-file which contains the necessary MATLAB commands.

If sim4 has been used, then eight learnable behaviours are involved, so the
data file is larger than in the other cases. As this is so, the data is only written

every 20 time steps, and it should be named using the command
e simplot8

When the data has been labelled in this way, a number of programs to plot

graphs are provided, as described below,

4.6.1 Feedback Percentages

To plot the percentage of time that positive feedback was received against time

steps, type
e plotppfb
Similarly, for negative feedback, type

e plotpnfb

4.6.2 Relevance and Reliability

The relevance and reliability of a behaviour may be plotted against time steps

with the command

e plotreln

where n is a behaviour number between 0 and 3 (or 0 and 7 for sim4).

31

4.6.3 Behaviour Statistics

The positive and negative statistics relating to each behaviour, from which are
calculated the relevance and reliability for that behaviour, may be plotted for

data from sim and sim3 with the command
e plotzsny

where x is p for positive feedback or n for negative feedback; n is a behaviour num-
ber between 0 and 3; and y is a for the statistics referring to when the behaviour

is active (cells j and [in Table 2-1}, or i for inactive (cells & and m).

4.6.4 Monitoring Statistics

The statistics relating to when a behaviour is monitoring a condition may be

plotted for data from sim and sim3 with the command
e plotmazsaz

where z is p for positive feedback or n for negative feedback; n is a behaviour
number between (0 and 3; and z 1s on for the statistics referring to when the
condition was on (cells n and p in Table 2-2), or off for when it was off (cells o

and g).

4.6.5 Plotting Other Graphs

The labels given to each of the columns of the data file are listed in Table 4-3.
The user may use these labels to plot any other graph that may be of interest,
either by entering commands on-line from within MATLAB, or by creating M-files

similar to those provided for the existing utilities.

Label

Description

Lsc time step counter

Inun leg n up condition set (1=true, 0=false)

Infn leg n forward condition set (1=true, 0=false)

Inbn leg n backward condition set (1=true, 0=false)

precryyz | precondition number yy for behaviour z with truth value z
(1=true, D=false)

ban behaviour n active (1=true, 0=false)

bmn behaviour n currently monitoring (1=true, O0=false)

psTyz positive statistics for behaviour z, row y, column = of statistics
table

nszyz negative statistics for behaviour z, row ¥, column =z of statistics
table

bompn behaviour n monitoring precondition number (preconditions are
numbered from 0 to 11, such that LOU is 0, LOF is 1, LOB is
2,L1U is 3 ... and L3B is 11)

men monitoring clock for behaviour n

bmppszyz | positive statistics for monitoring a condition by behaviour z, row
y, column = of statistics table

bmpnsayz | negative statistics for monitoring a condition by behaviour z,
row y, column =z of statistics table

ppib percentage of time receiving positive feedback

pnfb percentage of time receiving negative feedback

relen relevance of behaviour n

relin reliability of behaviour n

Table 4-3: Labels used to refer to Data from within MATLAB

33

Chapter 5

Experimental Design

The preceding chapters have described the learning algorithm, the construction
of the robot, and the details of the simulator. With all of these components in
place, experiments were conducted to test the performance of the algorithm under
a variety of conditions. It has already been mentioned that the robot was not
completed in time to allow testing of the algorithm on it, so all the experiments
concerning learning were performed in simulation only. However, an attempt
will be made to equip Smudge with a hard-wired walking behaviour by directly

programming the microcontrollers.

5.1 ‘Hard-Wired’ Gaits

5.1.1 On Smudge

Although there was insuflficient time to test the algorithm on the physical robaet,
it was still important to get some idea of how accurately the simulation modelled
the real situation. It was therefore decided that the microcontrollers should be
programmed to attempt to produce a statically stable gait. If this attempt was
successful, then it would prove that the ultimate goal of the learning algorithm

was achievable in reality.

Refer to Section 6.1.1 of the Results chapter.

34

5.1.2 In Simulation

As well as attempting to equip the physical robot with a hard-wired walking
behaviour, it was equally important to do the same thing on the simulation, in

order to have some confidence that the goal of the learning algorithm was at least

possible.

The first attempt involved programming the legs to swing forwards and move
backwards at suitable speeds and with such coordination that the simulated robot

was stable at every point in the gait.

A second attempt involved trying to achieve the same goal by incorporating the
global horizontal balance reflex, as used by one version of the learning algorithm,
In other words, the timing and speed of the swing-leg-forwards behaviours were
preprogrammed, but the movement of the legs on the ground was controlled by

the horizontal balance reflex.

The outcome of these attempts is described in Section (.1.2.

5.2 Testing the Algorithm in Simulation

5.2.1 Basic Trials

The most basic question that can be asked of the algorithm is “Does it work?”.
To answer this, a number of trials were devised for each of the three versions of
the algorithm (i.e. one with the global horizontal balance reflex, one with the
global move-leg-back reflex, and the other with the four learnable move-leg-back
behaviours). The purpose of the trials was to explore some of the parameter
space of the algorithm in order to determine what parameter values led to the
best performance. Each trial differed from the others in the value that either one
of the global parameters of the algorithm, or one of the thresholds relating to leg
movements, took. Details of the defanlt parameter values for each trial are given in

Table 5-1, and the changed parameter values for each trial are listed in Table 5-2.

An additional consideration concerning these trials is where to place the legs at

the start of a run. This is an important decision, because the initial leg positions

35

FParameter / Threshold Version A Version B Version ©
{global horvizenfal | (global move-leg- | (learnable move-
balenee refles) bnck reflex) leg-back

hehavidnri)

correlation threshald 065 .65 0.65

monitor duration ag a0 Al

reliability target 0,95 0.95 0.85

statistics decay rate 0.80 0.90 0.80

maximum elpha angles for legs 40 40 40

awing angle for raised legs at each time step | 10 g} 10

threshold for triggering forward and back- | 15 15 15

ward conditions

Table 5—1: Summary of Default Parameter Values Used in the Basic Trials -

are also those to which the legs are returned each time that the robot falls over —
different initial positions will presumably result in markedly different performance.
The obvious choice is to have all legs on the ground at the start of a run, all
perpendicular to the side of Smudge’s body (i.e. alpha = 0°). However, a look at
Figure 2-2 reveals that there is no one point in this gait at which all four legs are
actually in this position. Therefore, it was decided to run each trial twice, with
different initial positions for the legs; in one run, they were all on the ground,
perpendicular to the side of the rabot’s body (Pesition ‘4 7); in the other run, all
legs were on the ground, but this time, their alpha angles were set to values which
had been observed in the analysis of a statically stable gait at a point where all

four legs were on the ground® (Position ‘BY).

From the performance of the three versions of the algorithm in these trials, the

relative suitability of each one may also be assessed.

The results obtained from these trials are described in Section 6.2.1.

!Specifically, the alpha angles for the four legs were: Leg 0 = —38°, Leg 1 = 87, Leg
= 87, Leg 3 = —38", The gait from which these angles were obtained is demonstrated

in program siml — see Section 6.1.2.

36

Trial Version A Version B Version C

Mo,

1 default values default values default values

2 maximum alpha = 45 maximum alpha = 45 maximum alpha = 45

3 threshold for [/b conds = 30 thresheld for [/b conds = 30 thresheld for b conds = 30
4 correlation threshold = 0.85 swing angle = 15 swing angle = 15

5 monitor duration = 200 correction® = 3 crawl n.'l:lglth' =3

£ reliability target = 0.75 correlation threshold = 0.85 correlation threshold = 0.85
T statistics decay rate= 0.7 monitor duration = 200 monitor duration = 200

g — reliability target = 0.75 reliahility target = 0.75

=] e statistics decay rate = 0.7 statistics decay rate = 0.7

Ll

il angle by which o leg on the grouned is moved backwards at nach time step by the move-leg-back reliex

i;'I.l'ne' angle by which a move-leg-back behaviour moves o leg at each time atep

Table 5-2: Summary of Basic Trials Performed on Each Version of the Algorithm

5.2.2 The Effect of Noise

In the standard wersion of the simulation, all movements are completely
deterministic — for a given set of parameter values, the performance on one run
will be exactly the same as that on the previous run. Assuming that some versions
of the algorithm displayed reasonable performance with this simplification, then it
would be of interest to see how their performance is affected by introducing noise

into the simulation. This noise would take the form of a degree of randomness in

the movement of each servo.

The results of these experiments are described in Section 6.2.4.

37

Chapter 6

Results

The previous chapter gave a brief description of the experiments that were con-

ducted, and also some explanation of why they were conducted. The results of

these trials are now described.

6.1 ‘Hard-Wired’ Gaits

6.1.1 On Smudge

Unfortunately, the construction of Smudge was not completed in time to allow any
testing. However, some programs have been written to drive the servos via the
microcontrollers, and it is hoped to be able to demonstrate a hard-wired walking

behaviour on the robot in the week after the completion of this report.

6.1.2 In Simulation

It turned out that this goal was indeed possible — a statically stable walking gait
was demonstrated for both attempts at producing a hard-wired behaviour on the

simulation.

The result of the first attempt, involving hard-wiring of both the swing-leg-
forwards and the move-leg-backwards behaviours, is demonstrated in program

sim1.

38

The speed at which the legs swung forward, relative to that at which they
pushed backwards on the ground, affected the margin of stability' of the robot
throughout the gait; a high-speed swing produced a more stable gait than a low-

speed swing.

The result of the second attempt, using the global horizontal balance reflex, is

demonstrated in program sim2.

The gait shown in sim1 is an example of the general case for statically stable
gaits on quadrupeds where there are periods when all four legs are on the ground.
That shown in sim2 is the limiting case where one leg 15 raised as soon as the
previously raised leg is lowered — this is the gait discussed in Section 2.5 and

illustrated in Figure 2-2,

6.2 Testing the Algorithm in Simulation

6.2.1 Basic Trials

It soon became apparent that most trials were not producing a learned pattern of
behaviour which could be sustained for long periods — in many cases, new precon-
ditions were constantly being monitored, adopted or dropped by each behaviour,

so that the performance of the robot as a complete system varied over time.

This presents a problem with the classification of how good individual trials
were, and how good they were relative to other trials. Therefore, the method of
studying the trials was to let them run for between 5000 and 15000 time steps
(depending on how promising each one was looking), and noting the qualitative
performance of the robot over this time, together with some quantitative informa-
tion at inferesting phases of the run (e.g. the percentage of time receiving positive

and negative feedback during the phase).

'The margin of stability is the minimum distance between the projection of the
robol’s centre of mass onto the ground plane and the boundary of the polygon of support

provided by those legs which are on the ground.

39

After studying the graphs from the first [ew trials, a marked difference was
observed between the activity over time of the front legs compared to the rear
legs (i.e. there was a large difference in the statistics that were emerging for the
front legs compared to those for the rear legs). On investigation of the simulation,
it was found that this asymmetry in the statistics was due to a corresponding
asymmetry in the design of the robot on the simulation. The asymmetry was such
that, when all four legs were on the ground in initial position A, and one of the
rear legs was raised with the other legs remaining stationary, then the robot was
(just) stable. However, when one of the {ront legs was raised in a similar manner
from the same initial position, then the robot was (just) unstable. Because a
robot which had a perfectly symmetrical arrangement of legs front and rear would
be theoretically (just) stable if any one of the legs were raised from this initial
position, it was decided to overcome this asymmetry in the simulation by allowing
a small leeway in the margin of stability belore the robot was deemed to have
fallen over. Specifically, the projection of the robot’s centre of mass was allowed
to be up to lem outside the polygon of support provided by the legs on the ground

before Smudge actually fell over in the simulation®.

All of the trials reported below incorporated this fix.

Version A — Global Horizontal Balance Reflex

The observed performance did not vary signilicantly between any of the seven

basic trials, and none of them produced particularly good results.

For initial leg position A (all legs on ground, alpha angle = 0°), the percentage
of time in which positive feedback was received had typically reached 15-20% by
5000 time steps. The corresponding figure for negative feedback was 35-40% (see
Figure 6-1). In other words, Smudge was falling over about twice as frequently as
it was actually moving forward. The behaviours generally continued to monitor
new conditions, and no stable sets of preconditions were found which survived for

more than a couple of hundred time steps.

2That is, lem as measured on the physical robot.

40

Percantage of Time Recelving Posltive and MNegative Feedback

T T T T 1

00

Pargent
=

negalive feedback

AWWW
3“_ -4

10 positive feadback

[} 500 1000 1500 2000 2500 3000 3500 4000 4500 500D
Time steps

Figure 6-1: Graph of Feedback v. Time for Trial Al

For mitial leg position B (staggered legs), similar qualitative results were ob-
served, but the overall feedback figures were slightly worse — generally between

10-20% for positive feedback, and 35-40% for negative feedback after 5000 time
steps.

Version B — Global Move-Leg-Back Reflex

Generally, the overall performance of this version of the algorithm was better than
for Version A, but the results were still poor. At some points in most of the trials,
the positive feedback figure exceeded the negative feedback figure, but only by a

maximum of 10-15% (for example, see Figure 6-2).

The best performance was observed in Trial 1 (using all of the default values)
using initial leg position A (unstaggered). In this run, after about 5000 time steps,
behaviour 3 (swing leg 3 forward) adopted the precondition that leg 3 should be
raised. This appeared strange at first, as, in effect, it meant that the behaviour
would never become activated {as leg 3 could only be raised by the action of
behaviour 3). On studying the behaviour of the whole robot, however, this pre-

condition made more sense, as it meant that the robot was stable for more of the

41

Percentage of Time Recalving Positive and Megative Feedback
1ﬂn T T T L] 13 L}

= Iraces briafly
8 &g Cross over
& negative leadback heva
40
E-u R
positive fzedback
10F
il 1] i i i
oﬂ 1000 2000 3000 4000 50OD G000 T000

Time sleps

Figure 6-2: Graph of Feedback v. Time for Trial Bl

time (as leg 3 was always on the ground). Thus, the algorithm was able to explore
preconditions for other legs under more stable conditions. The balance between
positive and negative feedback reached 40% to 25% at this point. Unfortunately,
it appeared that the preconditions learned by other behaviours while leg 3 was
constantly on the ground were not suitable for when it was able to be raised —
eventually, behaviour 3 dropped the aforementioned precondition, and the overall
performance of the robot deteriorated to roughly 20% positive feedback and 40%
negative feedback after 10000 time steps.

The feedback percentages for the other trials reached similar values (they were
typically in the range 20-30% for positive feedback, and 35-40% for negative
feedback), with the trials using initial leg position A (unstaggered) marginally

outperforming those using position B (staggered).

Version C — Learnable Move-Leg-Back Behaviours

The trials with this version produced substantially better performance than those

of the preceding versions.

42

Percanlage of Time Recalving Posillve and Megative Feedback
L] 1] T T L] T W

posltive leadback -

100

BO

bile]

70

&0

Percent
(=

a0

a0

negative leadback

l—‘}l\«-nu-\ MAM“"'M

cﬂ 1000 2000 3000 d 5000 G000 OO0 BOGO 8000 10000
Tim&srapa

10

Figure 6—-3: Graph of Feedback v. Time for Trial C25

Although none of the trials reached a state where a set of preconditions had
been learned and no further monitoring took place, there were periods of up to 2000
time steps in some of the trials when no existing preconditions were dropped, and
no new ones were adopted, For example, in trial 257, the preconditions shown in
Table 6-1 were learned by 6500 fime steps. These were retained for a further 2000
time steps, during which time, the percentage of time receiving positive feedback
was in the range 95-100%, and the corresponding figure for negative feedback
was 0-2% (see Figure 6-3). However, new conditions were still being monitored
occasionally during this time; eventually some of the existing preconditions were

dropped and new ones were adopted, which led to a deterioration in performance.

With this version of the algorithm, the trials with initial position B performed
marginally better than those with position A. However, there were still no trials
in which a good combination of preconditions was found and retained indefinitely.
In order to investigate why these apparently good solutions were not remaining

stable, various graphs were plotted of the data produced from trial 25. It was

38" denotes the staggered initial leg position (B)

43

Behaviour Precondition | Behaviour Precondition

Swing leg 0 forward L3F T Move leg 0 back —
Swing leg 1 forward L2F T Move leg 1 back -

Swing leg 2 forward L3F F Move leg 2 back —
Swing leg 3 forward — Move leg 3 back L3F T

Table 6-1: Preconditions learned by Version C, trial 25

Behaviour § - Aslevanca [-) and Realiabillty {--)

1.5F

pr, = r = A= 3 S A e B T LTI P o R S T
S ikt A

I 1] [

] i]
alﬁ- -

Ml

Santistic
=

-0.5¢

1.5k

z I i 1 i 8 1 1 i I
20 10400 2000 3000 4000 5000 &0CD TOOD &000 9000 10000
Time sleps

Figure 6—4: Graph of Statistics v. Time {or a Behaviour from Trial C25

found that the statistics were far too transitory for a stable state to emerge —
even with a decay rate of 0.90, This is illustrated by the graph of the relevance

and reliability of Behaviour 0, shown in Figure 6-4.

A new set of trials was therefore conducted, all using a slower statistics decay
rate (0.99). The values of most of the other parameters were the same as for the
original trial 25, but the monitor duration, correlation threshold and reliability

target were varied between these new trials. A summary of the new trials is

shown in Table 6-2.

The best performance was observed in trial 12. The plot of relevance and
reliability for this trial is shown in Figure 6-5. It can be seen that these statistics

are much smoother than for the original trial illustrated in Figure 6-4. A graph of

44

Trial No. Stats Decay Monitar Reliability Correlation Initial Leg
Hate Duration Target Thresheld Position

10 0.59 o0 0.95 0.65 stagpgeced

11 0.599 124 0.85 0.65 slaggerad

12 0.99 (it} 0.7a 0.65 staggersd

13 0.99 70 0.83 0.60 staggered

14 0.9 G5 0.76 0.65 unstagmered

Table 6—2: Summary of Additional Trials Performed for Version C

Sintlstlc

Behavicur 0 - Ralevance {-) and Ralkblliiy {-=}

i)

150

="

i
0.5

- h rra-h" TP | T T e ey l',i-'!r'_ﬁ'fr e s T 1”*""*""‘“
T L) W

iy

-1.8F

=41 Akeq]
LAk

Time slaps

10000

15000

Figure 6—5: Graph of Statistics v. Time for a Behaviour from Trial C12

the percentage of time receiving positive and negative feedback for a run of 15000

time steps is shown is Figure 6-6.

The preconditions learned on trial 12, shown in Table 6-3, are different to those
learned in the best phase of trial 2. They were learned rapidly, and remained for the
duration of the trial. Some behaviours did occasionally monitor new conditions,
but no other ones were actually adopted. Nole that no preconditions were learned
concerning the movement of leg 3. This is an artifact of the staggered leg position
to which Smudge returned whenever it fell over; leg 3 was returned to more or
less the position where it should have landed after a swing-leg-forward movement

anyway, so that it was not necessary to learn any preconditions to produce near-

optimal {but not optimal) performance.

45

Percaniage of Time Aecolving Poslive and Negative Faadback

100

positive feedback

&0

50

Pergant

negative feedback

/] 8000 10000 15000

Figure 6-6: Graph of Feedback v. Time for Trial C12

Behaviour Precondition | Behaviour Precondition

Swing leg 0 forward — Move leg 0 back LOF T

Swing leg 1 forward L2F T Move leg 1 back —

Swing leg 2 forward 2B T Move leg 2 back —

Swing leg 3 forward — Move leg 3 back =

Table 6—3: Preconditions learned by Version C, trial 12

46

Behaviour Preconditions

_Swing leg 0 forward | L1U F, L2U F, L3U mF T
Swing leg 1 forward | LOU F, L2U F, L3U F, L2F T
Swing leg 2 forward | LOU F, L1IU F, L3U F,L1B T
Swing leg 3 forward | LOU F, L1U F, L2U F, L1F T

Table 6-4: Preconditions Preprogrammed into Version A, trial PA1S
6.2.2 Preprogramming the Behaviours

As none of the trials deseribed in the last section actually achieved the target of
learning a gait where negative feedback was completely eliminated, it was decided
to try to preprogram a suitable set of preconditions into each behaviour for each
version of the algorithm. If the desired gait could be produced by this method,
preconditions could then be stripped away from the behaviours one by one in order

to find the point where the algorithm fails to re-learn the solution sef.

Version A — Global Horizontal Balance Reflex

The set of preconditions that were programmed into the behaviours on the first
attempt are shown in Table 6—4. The first three preconditions for each behaviour
were chosen to specify that a leg could be raised only if all other legs were on
the ground, and the final precondition for each behaviour specified the required

coordination between the four legs.

Default parameter values (Table 5-1) were used in the trials unless otherwise

stated.

The first trial (PA15)? was with a staggered initial leg position. Performance
was initially perfect. However, after a very brief period (about 80 time steps), the
robot got into a position where all four legs were on the ground, the horizontal
angles summed to zero and none of the behaviours’ precondition lists was fulfilled

(see Figure 6-7(a)). Hence Smudge remained inactive until the statistics eventually

4P denotes a trial with preprogrammed preconditions.

47

ALL LEGE ARE IMMOBILE
UNLESS AN ARROW
INDICATES OTHERWISE

All lzgs heve renched exreme rearwd Two or more move-ieg-back
poskico rnd pa behaviour has e felfllsd bebaviouns bave grecosditlon liss which
procondilan sy cammat Ta fublilied (ecause preconditiona

relets o [mmohils iegs), so the essecialed
e kre deagpad, making e robot mane
slabls

oR OR
Three legs ora sack & 1he sitalen Any elbastlon whins no behavioas
Hurlzoata] lng englea sum o deseribed abowe, butona b stlil meving ‘has 2 Mmifiti=d precondition Hs
#ero amd na behaviour baa g freely
fubfllled precoaditlen [t \

{nl {b) (&)
GLOBAL GLORAL LEARNABLE
HORIZONTAL BALANCE MOVE-LEG-BACK MOVE-LEG-BACK
REFLEX REFLEX BEHAVIOLRS

Figure 6-7: Situations Where Smudge was Liable to get Stuck During Learning

decayed to a point where the behaviours’ reliability values were below threshold
(after about 1000 time steps). At this point, the behaviours started to monitor
new conditions, some of the preprogrammed preconditions were dropped and the

stable walking gait was lost.

Further trials using different parameter values and/or the unstaggered initial
leg position were not successful either — some would work perfectly for up to 2000
time steps, but eventually some of the preconditions would be dropped and the
stable gait lost in all trials.

The gait illustrated in Figure 2-2, which satisfies the horizontal balance con-
straint, was peculiar in that there was no period during the gait in which all four

legs were on the ground (apart from the four instantaneous moments when one

48

leg was just being lowered and another was just being raised). Therefore, a num-
ber of trials were performed where the initial leg positions involved one leg being
raised. Specifically, all legs had an alpha angle of 07, legs 0, 1 and 3 were on the
ground, but leg 2 was raised (this will be referred to as initial leg position C). Note
that Smudge is only just stable in this position, so it would not be a good initial
position for the physical robot. However, the trials were done to investigate the

performance of the algorithm a little further.

The first trial with this new initial leg position used the default parameter
values except for the following; ‘leg forward’ threshold = 5°, monitor duration
= 150, reliability target = 0.75, and statistics decay rate = 0.90. (This was felt
to be a fairly good set of values from the results of the preceding trials). The

preconditions were preprogrammmed as in Figure 6-4.

The results of this trial were very good — Smudge did not fall over and no
other conditions were monitored for the entire duration of the run (3000 time

steps).

Two similar trials were run, one with a statistics decay rate of 0.96. and one
with a rate of 0.99. Both of these performed just as well as the first run. With a
decay rate of 0.99, a few conditions were monitored in the first 300 time steps of
the run, but they were not adepted, and no more monitoring occurred after that
point. The plot of feedback percentages against time for the latter trial (PAS) is
shown in Figure 6-8.

Having found this good configuration, it was of interest to see how many of the
preprogrammed preconditions may be removed so that either the performance is
not affected, or the algorithm re-adopts them. A number of trials were therefore
performed where one or more of the preconditions was omitted. In trials where
one of the preconditions of one behaviour which specified that another leg should
be on the ground (e.g. the precondition L1U F for Behaviour 0} was omitied,
the performance of the robot was not affected and the omitted precondition was
not re-adopted. However, if one of the preconditions relating to the coordination
between the four legs was omitted, or if more than one precondition was omitted
in any one trial, then the algorithm was unable to re-learn them, and no stable

walking pattern emerged.

49

Percenlage of Time Recalving Posiiive and Negalive Feedback

1m T T T
5 WW
poshive feedback
[-5h] o
m -
m -
=
55
Ell g
10f
negative feedback
i i i i i
% 500 3000 3600 2000 2500 3000

Time slops

Figure 6-8: Graph of Feedback ». Time for Trial PAG

Thus, the algorithm was unable to learn a perfect solution for the problem,
even when placed a very short distance away from it in the space of possible

precondition combinations.

Version B — Global Move-Leg-Back Reflex

The first trial with version B of the algorithm was preprogrammed with the same
preconditions as initially used for version A, listed in Table 6. With the staggered
initial leg position (trial PB1S), Smudge did not monitor any new conditions for
the duration of the 3000 time step run. However, it did fall over on a number of

occasions, as illustrated by the non-zero negative feedback plot in Figure 6-9.

The algorithm fared less well when running with the unstaggered initial leg
positions — all of the preprogrammed preconditions had been dropped after 2500

time steps, and no stable walking pattern was observed.

As with version A, some trials were conducted, using the staggered initial leg
positions, where one or more of the preprogrammed preconditions were omitied.
The results were similar to those for version A, i.e. there were some precondi-

tions which could be omitted without affecting the performance of the robot (so

30

Percentage of Time Recedving Positlve and Negatlve Feedback

1% {H I —— S
a0 i
pasliva loedback
i
701 .
GO
E S0
&
ank
el
20p
1o nagalive feadback &
a i PR e I e 1 =
i} 500 1000 1500 2000 2500 3000

Time stepa

Figure 6-9: Graph of Feedback ». Time for Trial PB15

they were not necessary in the first place), but if any essential preconditions were

omitted, then the algorithm was unable to relearn them.

Version C — Learnable Move-Leg-Back Behaviours

Version C was equipped with the preprogrammed preconditions shown in Table 6-
5. Somewhat surprisingly considering that this version had shown the best results
in the basic trials, no stable walking pattern emerged with either the staggered
or the unstaggered initial leg positions. In both cases, the behaviours frequently
monitored conditions, adopting new preconditions and dropping some of the pre-

programmed ones.

Several other trials were conducted, using different parameter values, different
preprogrammed preconditions, and/or the initial leg position C described above,

but none performed any better.

In most of the trials, Smudge was getting stuck in a position where all four legs
were on the ground, but none of the behaviours’ precondition lists were fulfilled,
so that the whole robot was inactive (see Figure 6-7(c)). This situation was more

likely to happen in Version C than in Versions A or B, because the latter pair had

gl

Behaviour Precondilions

Swing leg 0 forward | L1U F, L2U F, L3U F, LSF T
Move leg 0 back LOU F
Swing leg 1 forward | LOU F, L2U F, L3U F, L2F T
Move leg 1 back LIUF
Swing leg 2 forward | LOU F, L1U F, L3U F, L1IB T
Move leg 2 back L2U F
Swing leg 3 forward | LOU F, L1U F, L2U F, L1F T
Move leg 3 back L3UF

Table 6-5: Preconditions Preprogrammed into Version C, trial PC1

Parameter /' Threshold Value
monitor duration 65
reliability target 0.75
statistics decay rate 0.99
maximum alpha angles for legs 45
threshold for triggering forward and backward conditions | 15

Table 6-6: Default Parameter Values Used with Extensions to Algorithm

hard-wired reflexes to move the legs, so that the system as a whole was less likely

to get stuck in a log jam.

6.2.3 Other Extensions

As most of the trials reported so far have not performed particularly well, it was
decided to experiment with a few extensions to the basic algorithm described in

Chapter 2.

In all of the following, unless otherwise stated, the parameter values and thresh-
olds used are as listed in Table 6-6. These values were chosen by consideration
of the parameter values in the best trials reported in previous sections. Those

parameters not listed in this table took their default values as listed in Table 5-1.

Not Returning Legs to Initial Position after a Fall

It was apparent in the preceding trials that the algorithm was not getting a chance
to explore a wide range of situations where the legs were in positions that may
have prompted the behaviours to learn useful preconditions. This was because
Smudge was falling over frequently, and the legs would be returned to their initial
positions after each fall, Thus, the number of times that a particular leg may have
been observed in a position near its extreme of movement in either the forward or

backward direction was often relatively low.

In order to help the algorithm explore a wider range of the problem space, it
was decided to try running it in a situation where the legs were not returned to
their initial positions after a fall. Instead, any legs that were raised when Smudge

fell were lowered, but the alpha angles of each of the legs were unchanged.

The following trials were all conducted with the unstaggered initial leg position.
This was, of course, of little relevance, as the legs were not returned to this position
after each fall.

Version A — Global Horizontal Balance Reflex In this trial, Smudge often
got stuck in positions where all four legs were on the ground with horizontal angles
summing to zero, and no precondition lists fulfilled. However, when the robot was
moving, the percentage of time in which positive feedbaclk was received outweighed
that in which negative feedback was received by 40% to 20% on some occasions.
This is a marked improvement on the performance of the algorithm when the legs

were returned to their initial positions.

At some periods during the learning, the algorithm seemed to be making good
progress, and Smudge appeared to be learning the staggered start position for itself
through adopting a suitable set of preconditions. However, it would eventually get
stuck in a position where all four legs were immobile, and the algorithm could only

overcome this deadlock by dropping some of these useful preconditions.

Version B — Global Move-Leg-Back Reflex With this version, Smudge

soon got infto a position where all of its legs were swept forward. From here, they

53

would move backwards a little under the move-leg-back reflex until the swing-
leg-forward behaviour for that leg was activated, returning the leg to the forward
position. If the robot fell over at any stage, then the legs were just placed on
the ground, and the behaviour pattern could continue more or less uninterrupted.
The resulting behaviour pattern was that each leg remained near its extreme for-
ward position for most of the time, just moving backwards by a few degrees (and
hence contributing to the positive feedback) before swinging forward again. The
problem was that the negative feedback received when Smudge fell over was not
contributing to the statistics enough to force the reliability of the behaviours be-
low threshold. Therefore, without having a reliability target of 1.00, the system
did not develop a proper gait.

Version C — Learnable Move-Leg-Back Behaviours The trial with Ver-
sion C produced very similar results to Version B — as the legs were not returned
to their initial position after a fall, the robot could ‘cheat’ and receive sufficient

positive feedback without developing a viable walling gait.

A Hard-Wired ‘Only Lift One Leg at a Time’ Rule

Another method to increase the overall stability of the system, and thereby pro-
mote the exploration of more of the problem space by the algorithm, is to build a
‘hard-wired’ rule into the algorithm which prevents more than one leg ever being

raised simultaneously.

This rule was incorporated into the algorithimm as follows; those swing-leg-
forward behaviours which were eligible to become activated® were noted. If no
swing-leg-forward behaviour was already active (i.e. if no leg was raised), then
one of these was picked at random to be activated. Otherwise, none was acti-

vated.

®That is, they were not already active, and all of the preconditions on their list had
been fulfilled.

o4

Behaviour Precondition

Swing leg 0 forward | L3F T
Swing leg 1 forward | L2F T, L1F F
Swing leg 2 forward | L1IB T
Swing leg 3 forward | L1B F

Table 6—7: Preconditions learned by Version A, trial RA2

Version A — Global Horizontal Balance Reflex Several trials were con-
ducted with Version A, using the staggered and unstaggered initial leg positions,
and changing the value of the reliability target parameter. However, as found
with many previous trials with Version A, the robot was liable to get stuck in a
situation where all four legs were on the ground, and none could move because
the herizontal angle sum of the legs was zero and no behaviours had a fulfilled

precondition list.

With an unstaggered start and a reliability target of 0.95 (trial RA2)®, the robot
did reach a good level of performance after getting stuck many times during its
early stages of learning. The plot of feedback is shown in Figure 6-107. After 10000
time steps, positive feedback was being received 95% of the time, and negative
feedback 0%. The preconditions learned at this stage are shown in Table 6-7.
Note that the behaviours were still monitoring other conditions at this stage, that
the negative feedback percentage was not always zero even after 10000 time steps,
and that the robot still gets stuck with all legs on the ground from time to time
{at which point the percentage figures for receiving positive and negative feedbaclk

both drop to zero).

8R’ denotes trials where the ‘only lift one leg at a time’ rule was used,

"The regions of the graph where pesitive and negative feedback figures are both zero
indicate times when Smudge was stuck as illustrated in Figure 6-7(a). This situation
is only resolved when the behaviours’ statistics decay to below threshold so that new

cenditions are monitored and some of the existing preconditions may be dropped.

a5

Percentage-of Time Recaiving Posilve and Megotlve Fesdback

100

%0 f
B0

70 positive leedback

&0
#
& sn
&

40

30

20

10 negative feedback |
DAY AR P A

1] 2000 4000 000 B000 10000 12000 14000 1B000

Time slaps

Figure 6-10: Graph of Feedback v. Time for Trial RA2

Version B — Global Move-Leg-Back Reflex Several trials were conducted
with Version B, again with some using the staggered starting position, and others
using the unstaggered position. The reliability target was also varied between
trials.

With most trials, Smudge often got stuck in a situation where three legs were
immobile at their extreme rearward position, and the fourth was swinging back-
wards and forwards through a small angle to drag the robot along and provide a
positive feedback signal (see Figure 6-7(b)). In this situation, no negative feed-
back was received, so that none of the behaviours monitored new conditions to

modify this behaviour.

However, on trial RB2, which had an unstaggered initial leg position and a
reliability target of 0.95, much better performance was observed. During the first
6000 or so time steps, Smudge was behaving in much the same manner as had
been observed in the other trials of this batch. However, by 6500 time steps, it had
learned the preconditions shown in Table 6-8, and was receiving positive feedback
100% of the time. The graph of feedback percentages is shown in Figure 6-11.
By 7800 time steps, some of the preconditions were dropped, but they were soon

relearned. However, at 8900 time steps, Smudge got stuck in a position where all

a6

Perceniage of Time Recelving Posliive and Negative Feadback

100 T T T T
PN A e
positive b
§
40
negative b
i X j — r’:‘x v, i-'ll"'h'ﬂ'r"k
o 2000 4000 G000 B00a 10000 12000 14000
Timea steps

Figure 6-11: Graph of Feedback v. Time for Trial RB2

Behaviour Precondition

Swing leg 0 forward | L3F T

Swing leg 1 forward | L2F T, L3F F
Swing leg 2 forward | LOF T, L1F F
Swing leg 3 forward | LIF F, L1IB F

Table 6—-8: Preconditions learned by Version B, trial RB2

four legs were on the ground at their rearward extreme of movement, and none
of the behaviours’ precondition lists were fulfilled (see Figure 6-7(b)). At this
stage, the statistics for the behaviours decayed away until their reliability values
were below threshold. Once this occurred, some of the learned preconditions were

dropped, and the walking performance deteriorated,

Nonetheless, this was a significant trial, as it was the first time that the al-
gorithm, starting with no preprogrammed preconditions, had managed to reach a
stage where the balance between positive and negative feedback was 100% to 0%

for a sustained length of time.

a7

Version C — Learnable Move-Leg-Back Behaviours The first trial with
Version C was with a staggered initial leg position and a reliability target of
0.75. After about 1100 time steps, Smudge had not learned any preconditions,
but was walking such that the proportion of time receiving positive feedback was
around 95%, and that receiving negative feedback was around 3%. The behaviours
occasionally monitored conditions, but none was adopted. In other words, an
acceptable solution to the problem had, in effect, already been programmed into

the algorithimn!

When started with the unstaggered leg position, the algorithm adopted some
preconditions, but failed to find a stable state where the percentage of time re-
ceiving negative feedback remained below 3%. The performance was virtually

unchanged when the reliability target was raised to 0.95.

A Combination

The trials which produced the best performance on each of the three versions run
with the ‘only lift one leg at a time’ rule were rerun with this rule being combined

with not returning the legs to their initial positions after a fall.

Version A — Global Horizontal Balance Reflex This trial used the unstag-
gered initial leg position and a reliability target of 0.95. During the run, Smudge
got stuck with all four legs on the ground fairly frequently (Figure 6-7(a)), and in
between these phases reached a balance between positive and negative feedback
of up to T0% to 10%. As seen with the previous trials where the legs were not
returned to their initial positions after a fall, the robot often got into situations
where its legs were just moving back through a small angle before swinging to their
extreme forward positions. This behaviour was such that the proportion of time
receiving negative feedback was not great enough to bring the reliability values of
the behaviours below threshold.

Thus, the combination approach did not perform as well as just having the

‘only lift one leg at a time’ rule for Version A.

a8

Behaviour Precondition | Behaviour Precondition

Swing leg 0 forward L3F T Move leg 0 back —
Swing leg 1 forward L2F T Move leg 1 back =

Swing leg 2 forward — Move leg 2 back —
Swing leg 3 forward = Move leg 3 back LOB F

Table 6—9: Preconditions learned by Version C, trial CC1

Version B — Global Move-Leg-Back Reflex Version B was run from the
same initial position and parameter values as was Version A. The results were very
similar to those of Version A — the combination approach was not as good as just

having the ‘only lift one leg at a time’ rule for Version B either.

Version C — Learnable Move-Leg-Back Behaviours As with the trials
using the other versions of the algorithm, Version C was run with the unstaggered
initial leg position, and a reliability target of 0.95 (irial CC1)®. During the first
T000 time steps, the run progressed in much the same manner as did those for the
other versions. However, Smudge was less inclined to get stuck in the situations
where these had done, because, with no hard-wired reflexes, such cases were less
likely to persist. At 7000 time steps, the performance was not spectacular (roughly
75% positive feedback and 3% negative feedback), but after a further 200 time
steps it had improved dramatically - in fact, to a point where positive feedback
was being received 100% of the time. The preconditions learned at this stage are
shown in Figure 6-9. This state was stable in that the behaviours only monitored
other conditions very occasionally, and none was adopted as a new precondition.
Smudge fell over on a few occasions between the time when these preconditions
were adopted and the end of the run (11000 time steps), but this did not result
in a change of precondifions for any of the behaviours. The plot of feedback

percentages for this trial is shown in Figure 6-12.

8The first ‘C’ in the trial name denotes trials where a combination of the ‘only lift

one leg at a time’ rule and the strategy of not returning legs to their initial positions
after a fall was used.

59

Percantage of Time Roecalving Posiive and Megative Feadback

100 . . ———T——
a0 positive feedback
m-
T0F
&
i
44
m-
zﬂ-
b negatve leadhack
o 2000 A000 G000 8000 10000 12000
Time slepa

Figure 6-12: Graph of Feedback ». Time for Trial CC1

6.2.4 The Effect of Noise

In order to test the robustness of the algorithm in a situation which more closely
resembled ‘real life’, the trials of each version which had produced the best per-

formance up to this point were tested under noisy conditions.

Specifically, each time that a leg was moved in the simulation by a change in
its alpha angle, a degree of noise was injected into the position to where the leg

was actually moved. Two batches of tests were run, using two different types of

nolse.

The first batch used the Normal distribution to add noise from the integer set
[—2,—1,0,+1,+2] to the desired destination angle of each leg. The distribution is
shown in Figure 6-13(a). The shape of this graph was derived from the Gaussian
equation:

g —)2
f[:r}:—ajz_ﬂ_ea:p %

where p is the mean noise component, set to 0, and

o 15 the standard deviation, set to 1.

GO

Iixp fiz)

t + t H T t 1 4 t : . 4 ; t |
PR P (SR P R i e — p—) i | i | it |] st | e | i | i) e]

()} Normal Distribution {b) Even Distribution

Figure 6-13: Noise Distributions Used to Test the Robustness of Learning

The probability, p(x), of an observation lying outside the range —z to +x may
be derived by integrating this formula, and values for p(z) are listed in statistical

tables.

In the simulation, the probabilities of the noise being —2, —1, 0, +1 and +2,

were, respectively, 2p(1.5), 1{p(0.5) — p(1.5)}, {1 — p(0.5)}, 3{p(0.5) — p(1.5)},
and %p{l.ﬁ].

In the second batch of trials, the noise was evenly distributed among the same

set of values; [—-2,—1,0,+1,+2] (see Figure 6-13(b)).

Although the accuracy of the servos was not tested on the real machine, it is
probable that the normally distributed noise reflects the real situation more closely

than does the evenly distributed noise.

Version A — Global Horizontal Balance Reflex

The ‘only Lift one leg at a time’ rule was used with the unstaggered initial leg

position and a reliability target of 0.95 (as in trial RA2).

With normally distributed noise, the performance of the algorithm was quite
drastically impaired compared to the noise-free trial; Smudge got stuck in situa-
tions where it could not move any of its legs much more frequently when noise was
added.

With evenly distributed noise, tlie impairment was not so marked; the balance

between time receiving positive feedback and negative feedback reached 90% to

61

1% at one stage, but this did not last for long and the robot was still more likely
to get stuck with all of its legs immobile (because no behaviours were eligible to

become active) than in the noise-free case.

These trials were repeated several times for both types of noise, but all resulted

in similar performance.

The observation that evenly distributed noise led to a lesser impairment than
normally distributed noise was unexpected, as the former type produces a higher
proportion of non-zero noise values. The data produced from the runs was exam-
ined, and it was found that, due to a peculiarity with the pseudo-random number
generator used in the algorithm code to produce the noise®, exactly the same noise
was generated each time the algorithm was run under a particular condition, so
that the observed performance was not just similar between runs, but identical
The bad performance of the algorithm with normally distributed noise compared
to evenly distributed noise might therefore have been due fo the particular set of
random numbers which had been generated. Indeed, on investigation of the noise

generated during the trial, it was found that negative-valued noise was produced

almost twice as often as positive-valued noise in the first 200 time steps of the run.

The problem with the pseudo-random number generator was fixed by setting
the generator to a different seed on each run. The trials were repeated, but the
performance with normally distributed noise was still observed to be worse than
with evenly distributed noise. This therelore suggested that the result was duetoa
more fundamental difference between the two cases. This observation is discussed

in more detail in Section 7.2.

Version B — Global Move-Leg-Back Reflex

Again, the ‘only lift one leg at a time’ rule was used, together with the unstaggered

initial leg position and a reliability target of 0.95 (as in trial RB2),

“It was found that the generator was reset to the same seed every time the program

was run, so that it always generated the same sequence of pseudo-random numbers.

62

| Behaviour Precondition | Behaviour Frecondition

Swing leg) forward - Move leg 0 back L2u T
Swing leg 1 forward L1B T Move leg 1 back —
Swing leg 2 forward LOF T Move leg 2 back —_
Swing leg 3 forward — Move leg 3 back —

Table 6—10: Preconditions learned by Version C, trial NCC1

Several runs were tried using normally distributed noise, and all resulted in

Smudge getting stuck more regularly than it did without noise.

With evenly distributed noise, the behaviours were able to learn good precon-
ditions {from time to time, but the noise always forced the behaviours to monitor

new conditions and drop some of the existing preconditions.

The overall performance of the algorithm was fairly similar for both types
of noise on most occasions, but trials with evenly disiributed noise sometimes

performed slightly worse.

Version C — Learnable Move-Leg-Back Behaviours

A combination of the ‘only lift one leg at a time’ rule and not returning the legs to
their initial positions after a fall, with reliability target 0.95 was used (as in trial
CC1).

Several runs were tried using normally distributed noise (trials NCC1)'9, In
some of these, Smudge was actually receiving positive feedback 100% of the time
by 2500 time steps (this is quicker than was achieved without noise). The pre-
conditions learned at this stage are shown in Table 6-10. However, after another
300 time steps Smudge got stuck with all four legs immobile (Figure 6-7(c)). As
usual, this situation was only resolved when the behaviours started monitoring
conditions and dropped some existing preconditions. After this point, good (but
not perfect) performance re-emerged on several occasions up to the end of the trial

(at 10000 time steps), but these periods were mixed with periods when the legs

1%N" denotes trials where noise was added to the leg movements

63

became immobile for a time. Hence, although perfect performance was achieved
quicker on these trials than on the noise-free trial, it only lasted for a brief period,

after which the performance was generally worse than it was without noise.

On trials with evenly distributed noise, the algorithm fared worse, generally,
than either the noise-free or the normally distributed noise trials; Smudge got
stuck on many occasions, and perfect performance was not achieved at any point

in the 10000 time step runs.

64

Chapter 7

Summary and Discussion

The previous chapter described in some detail the results obiained from trials
of the algorithm conducted in simulation. These results are now summarised,
some comments are made about them, and it is then attempted to put the whole
project into perspective regarding possible future work with the algorithm and

other research with quadruped machines.

7.1 The Original Goals of the Learning Algo-

rithm

Put simply, the original goal was to enable Smudge to learn how to walk. This
entails learning how to coordinate the movement of its legs so that the robot moves
forward without falling over. In terms of the mechanics of the algorithm, it means
that a suitable set of preconditions must be found for each behaviour to enable
the robot to exhibit this competence. As long as the environmental conditions
remain constant, so should the preconditions — no existing preconditions should
be dropped, and no new ones should be adopted. In this state, the robot should
never fall over, 1.e. the percentage of time in which negative feedback is received
should always be 0%.

G5

7.2 The Results Obtained

Using the algorithm described in [Maes & Brooks 90], with the slight modifica-
tions listed in Section 2.5, the observed performance was very poor. If the global
horizontal balance reflex was replaced by a move-leg-back reflex, then the per-
formance of the algorithm was still bad. With the reflexes replaced by learnable
move-leg-back behaviours, then the performance improved dramatically (see, for
example, Figure 6-6). However, although the robot could learn a near-optimal so-
lution in this case, on none of the trials was negative feedback actually eliminated

alfogether.

Attempts were made to preprogram suitable sets of preconditions into the
behaviours for each version of the algorithm in order to demonstrate that the goal
was achievable under such a learning mechanism. A set was found with which
the algorithm equipped with the global horizontal balance reflex could display
petfect performance, but this goal was not realised with either the global move-
leg-back reflex or the learnable move-leg-back behaviours. Particular difficulty was
encountered when trying to find a set of preconditions for the version with learnahle
move-leg-back behaviours, In this case, with eight behaviours rather than the four
of the ofher two cases, the problem of trying to specify sufficient preconditions to
produce a reliable walking pattern, but not so many that Smudge got caught in
situations where none of the behaviours’ precondition lists was fulfilled, was much

more difficult.

Two extensions were added to the basic algorithm, in order to promote the

search of more of the problem space by the algorithm:

1. Not Helurning Legs to their Initial Position after a Fall. The irials using

this extension were generally not very successful, for reasons explained in
Section 6.2.3.

b2

Including an “Only Lift One Leg at a Time’ Rule. This led to an improvement
in performance during some periods of most trials, but also to a situation

where Smudge was more likely to get stuck in positions where all four legs

G6

were immobile on the ground and none of the behaviours’ preconditions lists
was fulfilled.

A combination of these two extensions was also tested. This did not result in
good performance from trials using either of the reflex leg movements, but with
learnable move-leg-back behaviours, very good performance, sustained over a long
period, was observed (see Figure 6-12). Even in thig trial, however, having learned

a suitable set of preconditions, Smudge still fell over occasionally.

Some trials were run in which noise was added to the leg movements in the
simulation, in order to model reality a little more closely. It was found that noise
generally led to an overall decrease in the performance of the robot, andfor to a

decrease in the duration for which good sets of preconditions survived.

For trials where noise was added to the algorithm using the global horizon-
tal balance reflex, the surprising result that evenly distributed noise produced
a smaller deterioration in performance than did normally distributed noise was

ohserved.

The trials were carefully analysed to see why this was the case. As mentioned
in the previous chapter, when the algorithm was using the global horizontal bal-
ance reflex it was inclined to get stuck in positions such as the one illustrated in
Figure 6-7(a). In a noise-free environment, such situations could only be resolved
Ly one of the behaviours dropping a precondition so that a leg could swing forward
again. Now, it sometimes happened that the actual total of horizontal angles in
stuch a deadlock did not add to exactly zero, because the legs were only moved by
integer angles. In such a situation, the horizontal balance reflex may be sending
a correction signal of less than 1° to the legs, but they would not move because
of the integer constraint. However, if noise is added to this correction signal, then
there is a chance that the leg will move even if the correciion is smaller than 1°.
As soon as any leg is moved, the horizontal angle sum is no longer zero and the
deadlock situation is resolved. With evenly distributed noise there is a higher
probability of having more extreme noise values than with normally distributed
noise, so the chance of the deadlock situation being resolved is greater. Hence,
trials with evenly distributed noise were less likely to get stuck for long periods, so

their overall performance was better than those with normally distributed noise.

67

The types of situation in which the algorithm equipped with either the move-
leg-back reflex or the learnable move-leg-back behaviours were likely to get stuck
(see Figure 6-7(b) & (c)) could not be resolved by small, random movements of
the legs, so that trials with evenly distributed noise did not perform better than

those with normally distributed noise in these cases.

7.3 Comparison of Preconditions Learned by
Best Trials

Tables 6-1, 6-3, 6-7, 6-8, 6-9 and 6-10 show the preconditions learned in phases
of very good, stable performance in different trials. A comparison of these reveals
that there was no universal agreement as to what constituted a good set of precon-
ditions; the precondition L2F T for the swing-leg-1-forward behaviour was present
in all the examples, and L3F T was a precondition of the swing-leg-0-forward
behaviour in four of the six, but there was little agreement elsewhere. This was
not particularly surprising, as a particular behaviour could chose to coordinate its

activity relative to any of the three legs it did not control.

In trials incorporating the learnable move-leg-back behaviours, the algorithm
only learned preconditions relating to either the swing-leg-forward behaviour, or
the move-leg-back behaviour for any one leg, but not both, This, again, was
not surprising, because one behaviour or the other should be active throughout
the gait cycle, and the algorithm prevented both from being active at any one
time. Thus, as long as one behaviour was coordinated with the movement of the
other legs, then it was sufficient that the other should become active whenever the

explicitly-coordinated behaviour was inactive.

Slightly more interesting was the fact that in trials C12, CC1 and NCC1 (Ta-
bles 6-3, 6-9 and 6-10 respectively), good performance was achieved despite the
fact that in each case one leg had learned no preconditions relating to either its
swing-leg-forward or move-leg-back behaviours, In the laiter pair of trials, this
was probably because the ‘ouly lift one leg at a time’ rule was incorporated. so
that, as long as three legs were explicitly coordinated, the fourth would only be

eligible to be lifted at a suitable time. The rule was not incorporated in trial C12,

it

however, which explains why the proportion of time receiving negative feedback

never dropped to 0% in this case.

7.4 Some Reasons for Failure to Achieve Per-

fect Performance

From the results of the trials that were conducted, it is apparent that there are
some reasons for the failure to achieve perfect performance which are specific to
each of the three versions of the algorithm, and some which are more generally

related to the fact that a four-legged robot was used in place of one with six legs.

With the global horizontal balance reflex (as used by Maes and Brooks with
Ghengis), for example, it was seen that Smudge was liable to get stuck in dead-
lock positions, where the horizontal angles of the legs summed to zero and no
behaviour was eligible to become active (Figure 6-7(a)). This situation was more
likely to oceur on Smudge than on Ghengis, because Smudge had four legs and 12
perceptual conditions (an ‘up’, forward’ and ‘backward’ condition for each leg)
compared to Ghengis’ six legs and six perceptual conditions (an ‘up’ condition for
each leg) — with fewer legs and the possibility of each behaviour learning more
preconditions, it was more likely that none of the behaviours would have a fulfilled

precondition list at a given point in the run.

With learnable move-leg-back behaviours, legs which were on the ground were
not always being pushed backwards, because the move-leg-back behaviours were
not always active. In this version of the algorithm, Smudge was therefore much
more likely to drag legs along the ground than in the other versions. As long as
some of the legs are moving, positive feedback is received and the dragging is not

penalised, so Smudge does not try te find a better gait (Figure 6-7(c)).

There are several points which are relevant to all versions of the algorithm. One
is that, on several trials, Smudge got into situations where all four legs were on the
ground being moved backwards until a point where the robot became unstable.
The legs were then returned to their initial position, and the walking pattern would

repeat. The problem was that negative feedback was only received at one point

69

during the sequence, so that, if the reliability target was less than 1.0 then such
a motion would persist. The problem with setting the reliability target to 1.0 is
that it would then be extremely unlikely that any set of preconditions will persist
— even if Smudge never fell over it still may not receive positive feedback at every

time step, so the reliability of some behaviours would be less than 1.0.

It was also observed that in trials where a staggered initial leg position was
used, the performance of the algorithm was often worse than with an unstaggered
initial position. This may seem surprising at first glance, because the former
position was actually a position taken from the goal gait, whereas the latter was
not. However, the effect of the staggered position was to bias the learning process,
making some leg positions more likely to be explored than others. For example,
leg 3 started near its extreme forward position in the staggered case, so that it
was relatively rare for it to be observed in a rearward position because the robot
had often fallen over before leg 3 had a chance to move there, especially during

the initial stages of learning.

The question of stability also had a much more general influence on the perfor-
mance of the algorithm in all of the trials. As a four-legged robot can only lift one
leg at a time while remaining stable, whereas a six-legged robot can lift up to three
at a time, the former is much less likely to be able to adeguately explore the full
range of perceptual conditions during a learning run, especially the ‘leg forward’
and ‘leg backward’ conditions when the relevant thresholds for triggering these
conditions are high. An attempt to improve the overall stability of the robot by
including an ‘only lift one leg at a time’ rule in the algorithm resulted in improved

performance in most situations.

7.5 Further Experiments with the Algorithm

The results reported in the previous chapter suggest a number of additional ex-

periments which may be conducted. These include

o Testing whether Additional Perceptual Conditions were Necessary. The orig-
inal assumption that it would be necessary to include ‘leg forward’ and ‘leg

baclward’ conditions could be tested by removing such conditions from a

70

algorithm; using a staggered initial leg position required prior knowledge of the
solution, using the ‘only lift one leg at a time’ rule introduced an extra non-local
component, to the algorithm, and with the number of parameters and thresholds
which could be varied, it often felt as if the experimenter was doing more work

than the learning algorithm to find a solution.

An additional point is that all of these experiments were run in the simplest
environment possible — a (simulated) smooth, level floor, but the real world is
full of obstacles and inclines. Even if the algorithm could be made to perform
perfectly in the simple case, it is hard to imagine it being able to cope with more

complicated environments.

7.7 Possible Extensions

There a many ways in which the algorithm could be extended in an attempt to

improve its effectiveness when used with a four-legged robot. For example,

e Penalising Dragging of Legs. This applies particularly to the versions in-
corporating the move-leg-back reflex and the learnable move-leg-back be-
haviours. A penalty might be imposed, in the form of negative feedback, if
any leg is stationary lor a certain length of time, or if a leg is on the ground

but not moving when positive feedback is being received.

o Giving a Larger Weight to the Negative Feedback Signal. This would help in
situations where the robot was able to settle into an unsatisfactory walking
pattern because negative feedback was only being received for a brief period
of the gait. Note that this would probably not be necessary on the real robot,
as it would take a longer time to recover after each fall, so more negative
feedback would be received anyway. This suggests another solution to the
problem on the simulation — malke the robot stay ‘on the floor’ (receiving

negative feedback) for a longer duration each time it falls over.

e Adding more Sensors to the Robel. The physical version of Smudge is

equipped with force-sensing circuits to enable monitoring of the load on each

72

of the servos. There is also a [ree pin on one of the microcontrollers, which
may be used for another sensor, such as a tilt sensor. The former could be
used to tell Smudge when one of the legs was pressing against an ohstacle,
and the latter to provide advanced warning of when a fall was likely to occur.
However, in order to incorporate such features into the system, some fairly

extensive modifications to the existing algorithm would be required.

7.8 Relating Results to Other Research

Much work has been devoted to the control of quadruped walking machines by
Shigeo Hirose and colleagues at the Tokyo Institute of Technology. In [Hirose 84],
a ‘classical’ control system is described which provides a quadruped with a robust,
statically stable walking pattern. The robot used has joints at the knees as well as
at the hips, and is able to negotiate obstacles and stairs very effectively. In other

words, this systemn was far superior to anything achieved in the present study.

[Brools 91a] describes work on a successor to Ghengis, called Attila. This robot
has six legs, each with three degrees of freedom, an active whisker, a gyro stabilised
pan-tilt head carrying a range finder and a CCD camera, and over 150 sensors.
Obviously, such a machine will require a control architecture of vastly greater
complexity than that of Ghengis — the paper describes some of the problems and

challenges facing the designer of such a system.

As we come to expect greater performance from our robots, it is likely that
statically stable gaits will not be sufficient to provide fast enough locomotion
in many cases, particularly with quadrupeds. Indeed, it is not clear that any
natural quadruped employs a statically stable gait (see [Raibert 86] pp 89-92).
In the same text (pp 95-106), Raibert describes preliminary experiments with a
quadruped hopping machine. Although the reported system had many limitations,
it suggests that the implementation of a robust and practical dynamically stable

quadruped is feasible,

However, Raibert and colleagues’ work involves classical systems of control,
whereas one of the aims of tle present project was to investigate the applicability

of behaviour-based architectures to the control of quadruped walking. Within

73

the past few years it has become popular to model robot control architectures on
the neural circuitry of animals (see, for example, [Beer & Chiel 91], [Ekeberg 93]
and [CLff 93]). An investigation into the different types of coordination systems
employed by animals for walking is described in [Cruse 91]. This research is useful
not only for building artificial systems which replicate such control mechanisms,
but also for comparing the solutions found in nature to those found in artificial

systems that have been developed independently.

A proposal to build a neural network based control system for the control of
legged locomotion, inspired by natural legged systems, is described in
[Wadden et al 93]. It will be of great interest to see the results of such an en-

deavour.

Meanwhile, research is continuing apace in the development of classical con-
trol architectures, and also of hybrid systems which incorporate some elements of
both approaches. It is likely that classical systems will continue to out-perform
behaviour-based ones for some years to come. However, there will come a stage
where the required competences of a system will simply be too complicated to
be explicitly programmed. When such an impasse is reached, behaviour-based
systems will hopefully have progressed far enough to be able to learn increasingly
more complicated competences by themselves. Through the study of control ar-
chitectures which can develop and modify themselves, the possibility of gaining

insight into natural control systems also arises, and vice versa.

T4

[Beer & Chiel 91]

[Brooks 89]

[Brooks 91al

[Brooks 91b]

[CLiff 93]

[Cruse 91]

Bibliography

R.D. Beer and H.J. Chiel. The neural basis of behavioural
choice in an artificial insect. In Meyer and Wilson, editors,
From Animals to Animats. Proceedings of the First Interna-

tional Conference on the Simulation of Adaptive Behavior,
pages 247-253. MIT Press, Cambridge, MA, 1991.

R.A. Brooks. A robot that walks: Emergent behaviors from
a carefully evolved network. Al memo 1091, MIT Artificial
Intelligence Laboratory, 1989.

R.A. Brooks. Challenges for complete creature architec-
ture. In Meyer and Wilson, editors, From Animals to Ani-
mats. Proceedings of the First International Conference on
the Simulation of Adaplive Behavior, pages 434-443. MIT
Press, Cambridge, MA, 1991.

R.A. Brooks. Intelligence without reason. Al memo 1293,
MIT Artificial Intelligence Laboratory, 1991.

D. Cliff. Animate vision in an animat fly: A study of com-
putational neuroethology. In Internationel Workshop on
Mechatronical Computer Systems for Perception and Ae-
tion, pages 11-18. Hogskolan Halmstad, 1993.

H. Cruse. Coordination of leg movements in walking ani-
mals. In Meyer and Wilson, editors, From Animals to Ani-

mats. Proceedings of the First International Conference on

75

[Ekeberg 93]

[Hirose 84]

[Maes & Brooks 90]

[Raibert 86]

[Song & Waldron 89]

[Todd 85]

[Wadden et al 93]

the Simulation of Adaptive Behavier, pages 105-119. MIT
Press, Cambridge, MA, 1991,

0. Ekeberg. Neural control of vertebrate locomotion. a
computer simulation study. In Internationel Workshop on
Mechatronical Computer Systems for Perception and Ac-
tion, pages 375-378. Hogskolan Halmstad, 1993.

S. Hirose. A study of design and control of a quadruped
walking vehicle. International Journel of Robotics Research,
3:113-133, 1984, ‘

P. Maes and R.A. Brooks. Learning to coordinate behaviors.
Proceedings of the AA AT 2:796-802, 1990.

M.H. Raibert. Legged Robols Thal Balance. MIT Press,
Cambridge, MA, 1986.

S-M. Song and K. J. Waldron. Machines That Walk: The
Adaptive Suspension Vehicle. MIT Press, Cambridge, MA,
1939.

D.J. Todd. Walking Machines. An Introduction to Legged
Kobots. IKogan Page, London, 1985.

T. Wadden, O. Ekeberg, and A. Lansner. Towards ann
based control of simulated legged locomotion. In Interna-
tional Workshop on Mechatronical Computer Systems for
Perception and Action, pages 379-382. Hogskolan Halm-
stad, 1993.

Appendix A

Final Specification of Smudge

Body length: 248mm

Body width: 69mm

Leg length: 150mm

Weight: 550g

Servo type 1: Futaba FP-5143

Servo type 2: Futaba S5101

Microcontrollers: Microchip Technology Inc. PIC 16C71
Power supply: 5.0V D.C. external supply

17

Appendix B

Program Code for the Learning

Algorithm

S e e e P ——

ALGORS THM The Learhisg algesizks,

Pingluds "top.h"

vid Lnitialise ‘sq positions{veld))

vold Llnitiallise_. enlngiwold)y

wold update_gonrdlclan_tlags fveld]

ahar selact_a_pakavigur_for greupi{char, ashar, char {|bs
valid centlnue_active bshaviours (wvoldl s

wold glabal morirontal balanmemiimt (}3g

wobd et _advancs Sistamco (Aet (), flost {10;

wobd update_atafs{cRaE, boaal, Esalli

wald =onlcer_saxt_oondition{charlr
vold cantinee _monitocing ichagl;
woid STRrr_befsvisurjohacl

wald drap_uandlclen lahacks

void adopE_conditiasjehaE, Beol])

wold naxt _tlme _scepitioat [|. flomt (], bool *h:
wold updata_output_file{veldi;
wold ciwas _Soniticring_statsicha
Donl candlileon_set (cnac, chachs
boal rellasleicharly

bool ssleczablaicharts

£leat ralovance ichatls

Bl=gs sellabliityisnarl;

fleat ImceEescingness ehard
floas aorr jchar, fioaw [1{1[1k7
fleae gat_iat _asswwsibosl, flear, floath;
Iloat selative_pesilac, lac, Cloachy

chas e _bahaVious hunkar{char, ehas)i

ing plus_nolseliscir

/% definitlons of glabal parapeters used by the algerlthe */

tdafling mumter_of mebhavicurs [char]l 4
feaflna numbar of groups [charl 4
bdaflra fopwars threshold Iint} 15
fdoflne bazkward threphald Iincy =15

fina Leg_forwsrd sWtent inzi 45
afine swing_sngle flnzl i

Fdeflne Horly balashca dsscusE [floaey ¥.00

Fdaflno correlacion thrasaold 1float) B.55

tdefine aeniter_duratian {ficat) 43

tdofine rallamilicy_targes {float) 0,55

fdofine ptata_lnitial_walue {fkmacy 10

#Zoiine :tltl.l__:lm.'-lr_.lh._L ifloat) 0,80

/% The follewing definlilon is chat given in "A Soock on C' and sgress wich callipg
#coflne RAKD HAN 2547403648

¢*fdefiniclons of data sCrusturds waod by Thu algorithm of
taal tag_n_upldl, log n_forwerd(4], leag_p Sackward{d4i;
ZRBOE arder_of conditiana 32| (207

sHag precenadls ien t4ITLIELT R

EELH sehavious aetiveid)];

m=E. shevizur _nontzarlng[4l:

flmatT pes_sratald 1030, nag_statald] P20y

78

P

randil mapy tloma to get Saz TF

The parcaproal esndicisens:-
chroughout the program, chess
eapditlens are rofarred to Dy
& D arcay, wharo

plamanc 01 sondition (@=leg ap,
¥ i=log forwssd, Y=lag back]l
olocest 13 log Susbes [O=31

specifian She order Ln which
aphda are svalosred by behav' s
falibl:

a = ardar of zondlitilcnas

= = latth c=hdliion dar (=, 7%

e mark emd af [lak}
fallp] el
a = palavlour pumbar

8+ precanditlen numbes
& = zendltlon, with sicpenc 1
indlcaring whother =ono

ahpula Bs Esia ap faxlao,
lor [=,39, o mark eng =f
procond lisch

mtiblieie

L

M

shar cahaviour _n_manliaring _procondid];
Tizal Eokav_non _prec_pos_stacafd) (2342);
fioat Behav_sen_pres_neg_state (6120030
13 seniearing_slacsidls

tnz Silps _stop CoUnCarcy

anar nusbar_of _bahaviguss_la_grouvpisuzber of groupsl

#* & = Dehaviour nonber bt
#* B = rows of wCAT Table "
#* 2 = golumne of Ftac cable "

/% Indemed thrw erder of condeljl] *Ff

¢ —

inizlalise_lag_paoslticns Called only once, at ihe segisning =0 Cho al=ularties

wold inltisliss_leg posiflons (veldl
r

ehae Lj

for (L = Qi L < 47 kes) T

alpaa{il = O;
marafi] = LEQ [ewhy

£

tnltiallaw_lescming Initlalise varlablos used by the learalng algorichs

L

wald Lpaielalla aacrning lvoldl
i

anar 1, 1. k7

For §8 = &f L « 13; Ls==) |
srder_af_conditions[1]{0] = 1L % 2
srder_of conditlenafiijl]l = L /1

A

b
order_of _copditions{1Zi (1] = %87

for (L = 0 L' ¢ nunbsr_of bDehavioursr 1==|
preconditlaniL] (2] (9] = 07
praconditlonii]l (B[4} = Lif
preconditlonil] (O] (¥] = falaar
pracasdieleni] (1] [1] - ¥5
Habawiour_actlvall] = falamo;
Eehaviour_panitoringil] = falaas
bohaviour n sshitecleg precosd[l] = (11 = L = 37 % 12:
rar (4 o= 071 2 2e deed

Tor (k= O kK & 2y k+=1 -
poa_staca L] [31(E] = atac mitial valuay
mag_atata[l] [§i[k] = sceca feitlal valua:

|
claar_momicoring scsts (i)
b

for (L = 8 L ¢ nunbar_of groupsr i)
nenbar_af_behavicars_is_groupll] = 17

b

e

i* & a_olnl| |9)=cand, [nlill=leg na =/

#% 30 prder Le: =
i Lfu; 10f, 166, Lllu. ... =
£ L3 aa 13w, 13, i3 .
F% 2= to gack sned of cha liat -
J* imlrisl preconditlien list for oy
S* sach behavloar jest contains my
/% tho peecosdivimn thet Che wy
F* corpmspeading leg ls soc up sy

LF

Sent_Tise_stap

Funcs len reaturns valias ladlearisg sew fae Emudge has sdvancsd along the X and ¥ akoa, plus
information about Feudge’s stabllizy Ln the new poniticn (L.m. &) Bew far Tha CoM ls from the

boundary of supperc dafipad By tho legs evsrencly on the ground, and 51 which two legs =n Tha

reund daflina the ssctlion of this boundary which Le clcaoet to the CeMl, The globel alphs and

ta vhluss afw eleo dpdated Lifmctliy.

L
veid nezt_time_stepl(float sdvance usluesill, floaz scable_vaiusell], beal *previcus_neg_fkl
[]
anar L1, 1. EF
boel poslcive b, segacive_Ebg
int advamoe_anglesid];
char coant, to starc(dis
imm_atap_rountesss;
L-dn-_uunﬂ.lr.iun_.t.‘l LRGN
L I*previces neg fB) | f* Tf fpodge foll sver lkat Elew, L
tmicisllae Jeg pesltiona(ly £= parurm legs To aTarting positien, =7
for L = 07 I £ ouxbes;_of bohavizara: i=+f S and sicp all sussently sstive LT
sehawlous_activel[f]| = Fals #* bohavicura. =y

goc_poaltioss ik
azvsnco_wainea{l| = advepce_=olues(l] = 0.0r i\

wlaa |
EET S T
for {1 & 3y | ¢ numsor - of_groupsy le==)
SOunt = soloer g tonavioor for graupdl, esumE. Ta_at
L iemunt > O}
stars_behavieuribe_scars{ linc| ramd{d % esuse|h;
2mArinoe_active Sohswioura[l;
Alesa]_heprlEcat =s.ance ladvance_anglanl g

Ges _peslcionsih
Fet_sovance_dinsance agvanco_angles. Jdvance. Valieal;

y_itnfotatable_va.deal;

.

negag _fb = |stabla wvalusa[0] < —-19.911
posliive_fbo = (sdvance wvalusa[l] > 0.0 && negeclve_Ibiy

for i = @r & ¢ nuober_of _oehavicures L==}
update _stateil, positive_fb, negacive_ID1) ¢® ipeludlng sopltorling steats & c=loek

fer (L = Or L < nunber_of genavieursi Lr=1 i
1f lipshavlour_manitoringi(l] & ‘rellenleili)
zanitor_next_zordltloniil s
if ipshavicur _manitecingiils
i cznt bnue_sonliering il

far {8 = OfF & o dp Lemf | v rranafer dacs o global varlablaes »F
aonicer_c=lack _datall)] = (benavicur_marltoringllll 7 senisering_rieckil] | 0 /% o Da displayed by simulatlen -
for 43 = 0p 1% 25 J==1 |

sonizos_detalillfi = {mahavioue semltoring]i]} 7 ardar sf_copdirions(bahsvisus p_morirerieg pressnsili)] (i) & 89:
|
J.= 0
da |
fep 1k = 0; & « 35 ksl |
precond datafl]f]] [k} = precondltlom(liijlik];

| while (peeceaditien[ij[s=1[1] != 931,
]

mas_fb acrsylcise_scep _souncas N FB_STAT_SLICE| = (posit Pl il
aeg_Ib array|tlos_piep_counter % FB_STAT _SLIiCE! = (pogati TlonWr
spravicus_nag_fb = [basl) aogetize_fi) 4= 30 Smudge Enows whacther ne should ay
/= selpitlalisa stance st nazt Slasetap %7
Lf (rime_scep_sounter ¥ 10 == 0)
update putput flled); /* cmtpat atstlaties ta file oF
]
e
apdete_condlizlon_flags Calles at thm Segimning of che csatrol lesp
—
veld spcdate_sandition {lags (veld)
1
shar L1
int mlger
far (1L = 07 & < 43 Hs=} |
algn = fL = 1p F.-1 = 1;
lwg n_wpli} = {bacafL} == LEG UF};
lag_n_romwardii] = f(algn * aipheil| > ferwezd thresholdl 5
Jag_n_backward[i! = [eign * alpha(l] < Backwsy2 threahaldls
|
1
¢ .
conditlon_sec ACQuments:
e o D = gonditleh Aoshe
8 = lag susbae
Reciurns che sarfent boolean valus of precepizal cendlilen n fer ing B.
r

bool condiclen_ sot{char cond, char legl
P

awlbch foondl {
zawn Op
=etuse leg_n_upilegl;
came Lt
futorn leg_n_farwssd[lag)y
aasm I:
racurn leg_n_backvard[lagl:
dafault
;‘Hn‘llt'mdluﬁn_“ir Ihvalld condltion hunbes=);
return false

Fuseclon saturnd The saelavanos of the Sehevloovs ipdicacsd by fts arguzent, The rolavance iz a
fleating polnt nusher Becueen —2 and =2,

s s e B f

fleat relevance [char @l
£

EARLET cop R PENLATARS] = coppfn meqiararar;
|

- = — na S ——
Sollabllity Fuonetlen cetuezne Sha sollabi of tho bohaviour Lscdicated By 1ts afgoment. The seliabilizy fa &
e SIARELET pEint Acobaf betuwaah
Argiumest
n = sohaviour susher

— R— .y
float soliablllty ichar ml ¥
i

fleat poa_densa, ned_Zensm, sazl. =amds

pos_denss = pas ascatsin] {07[D] - pos_scatsin e
nog_denom = neg_scatsini{Q| {01 - meqg_scasalnl (S (9ls

zax! = Max{ipoa_s=azs{ali0] 0] / poa_Hehesp, [pea 3Esfa|n

¢ pos_defisali;
max? = Hawd iRy _stacx(nj (&[] ¢ mog_cunomb, ‘mog_stataim

* mwy_dnnemip;

*eEirn HMincoaal, masld|;

“mozesaviiur Indizased Dy IS argomant . The

-1
#
>
o
n
s
)
E]
&
k1
E
"
5
W
o)
=
=
&
-
E
w
a
yil
=5

E
u
u
u

80

[

S rem s m— interestingnans 18 8 floaticg polnt numBer Betwssn O smd 1,
Afquaspt
A = bBehevisar susbes
[R— - Wy
float !rtefomt lngrass (char mf
|
floac pes _snower = 0,0, Aoy spsver = 0.3
chae eonditlan _tlagy
L (sehavicur sanltaclaglall |
Mdltlﬂrl_friq = cendltlos_seat jorder of zenditions|behaviour n_ sanltering precopdisi] (0],
ardaf_af conditionsftehaviour_n_menitaring precarde|]{L]is
pas_seawar = get_Lot_snsworp icendiclon_flag.
Eahav_pon _prec_pos_ stace(ni(0] (9] - bahav_men_prec_pos_atetsfrlil][0],
Danew_z=an_prec pas stetein](01{L] - canav_non_prec_pos_stacsiel (1] [31§1s
neg_andwer = ot LRt arawog [cpaditleon_fieg,
Eabay_man_prec_reg_stecsind [8]18] - Dahav_mon _prec neg statainiill (9],
h-lllﬂ_nnr!_yn:_ruq_ltanrnl[’l:l:lil'l = pakav_Boh_prec hog_statainlfl] (D014
I
TELUCN MAN{pO3_aASWer, neg_asRdwes);
l
el
9“‘ ink_snswar Callad by Fumerldas "lAterestlngnean’ Eo calsulste parcisl sclutlom.
Argumonis;
condition an = flags wheches the ssndltlen Jpder conalderatlon e surmently oo
an_atate = pum of the scaciscles relacleg to the conditlon being o
ﬂi!_ﬂ-ur = pum of tha aratiscies ralatlieg o the condltlon balag off i
float get_Lec_smowss {bosl geaditlon_on, floar on_stets, flost aff scata)
1f feendltlon_on &k on_e % off_stacs]
FRCUFE OFf SCALE / (On_SEAER » GEF_stacel]
slss Lf [leopdizlon_on Le off steta < on_ssaksl
rELUrs En_skata = o _ sERER + aff llll’.i!j
aln
retarm 0,00
i
I
carg Aoturnn the Foarsen preduct-sesapt cocrelation coafficlanc of tho staclatics passad Ln as a 27 arrey
—— Afgusohto;
n o= index ©0 che susznd argusent
alnl {203 = an arrav contalniss tha selovan:t stabiacles
- ar
flzat sacrichar n, float s[]{Z)[20)
i
flost demcmisarasg
dancemlmares = (floas] sgzciia(nl(11{L] - sin] (210081 * calal(l001} = afnjd@1§1]1 * A
lalnf[901{9] « ainl [@1{21) = (slaifoiic] = alndll1d0)10s
Teturm ldenceipater == 0.00 F O : (2inid01{0] * sinl010010 = sis][30(6] = alati0lii]) / depcmimster;
]
e
ralianis Fumeclom raturss TRUE LY che behavieur lemdicated By lta arpusen: is reallable, FALBE athoew!ss.
R Argusent &
n = bakaviour neshar
o'

Baal rellablafehas nh
1
faturn jepal) (rellablllcyin) == rellskillcy_tarqec)s

salact s bahavicour_for_group Acceedlsg te the relstlve relavescs, reliablliey and latarestingnees af saleccable
tenmviours, snd scciveEs the chalca.,

e

Argurant :
n = group nusbes

Char salscr s behsviour for groupichar B, char nushar to stars, char ta,start(]]
L]
ehar 1; behawisus)
"i shaf behaviour to_starc = 99;
zhat number_of_seloctable bebavisusa = 0O;
shat selectable_bahavisurs (Ausher of behaviours_Ln_groupial];:
flzat prob|pesber of bohavieura_Ln_groupinl s s
flzat zhot:
floar retsl = 9.0;

for [L = 01 1 < nonbar of Sshavledra_in g—qu-pm“ Eas]
LE Y ecnableigec,_| s v iaas
seleztabie_besaviowsa [fusbec_af_ u'tu‘tnnla _Eemaviaygsaes| = 7

far dl = Oy L < numiber af seleetablo _behavisurs; 1-+1 |
Suhawlzur = ger_| noha¥lons _mumbesin, asoleciable _bahaviouraiilly
praiaf[i] =3 ¢ {7 - ralevanceibehaviove| %
= roliaplllity ibohavwious]l %
= 0,5 " Intefeatiognnas (bahaviousl |

has = (ifloaz) rapd(l / (float) RAND HAX) =
1.9 = ifioatl numoer of selcScable_oohavicarsr : A maalsim ouvalue 2f probfm, La Lioer

for (L = Jp rstal § shet & L € cusbar_of_asleemamle senavisuss; fas)
SEds - praEil];
47 drgsal e anorl
Swhaviour to s5ars @ QAT _Dehavlaos roshes in, ae.eczable senaviaurs by

81

1F ipehavicss =o_scarc < ¥
to_sLaft [RuSber to_piagtes| = Dehavigur te_starss

fELUEA MUADET _To_EEAIT}

i -

swlscranle FAetuens TAUE 4f tha bamaviour Lndlcsced by che srgusens both ls nac carrently mctive and has all

—————eaeee preconditions fulfilled. Othufwlas cecucnos FALSL.

& E g G
h o= mahaviows nesbar

s

bool selectable{zhar ny
L]

Beal AmIWer = LILE)
Lpr Ar

for (4 = 03 1 € 4 &k anwwar == crusj Le+) f
1f ibehaviour scclve(l]}
answar = faliei

3
if fapEwey == Crus]
faF (L = 0p ansver == crue &6 pracandition

[nf[4)[1F != 995 &
srawar =) |esnditlon_set (precsadition(ab[EFD

wmf
}o preconditioninliiliiiy = preceadielanin] (1142100

FRtUfA ARFwwr/

ie -
sEart_Dahavlous IniElase tha Dehaviour indicaced by he afgusanc.
ATGSEAL |
n o= Bahawlour numbas .y
wold start_mvahavious{shaz n)
1
behavlour_sctlveis] = crued
meireh cm) |
cass @7
T@[9)] = LEG UFF
EE@ak:
sasn
Batal[l] = LEG_UP;
BEaa
easa I1
botaldl = LEG_UFy
Braak)
caEs Ji
beta[3] = LEG_UP;
Sroskl
safanle:
princt {~START_BEEAVIOUR: Lnwalld aggumentihn®iy
b
FOLUTAY
1
i
come lnge_serlue_Behavloues For the sims Salisg, This fumctlen just advances any lege which ars sorrently aff tbo
ground. [f aueh 3 leg ceaches the forward lielc of lts =otleom, then 1t la lawered o
the gteund, snd the corcesponding behayiour_setive(] flag I3 sat to Falan. i
wold nunf-lquq_.e:l.\la"hma-hw:iiuudl
|
int 1, algn?
fop (L = Oy L = 4&; I-v-rll‘ i
adge = |1 > 11 7 =1 5 Ly
1 jﬂu:a[ll == LEG_UTH el
atlphafl] = plus_rmolissfalpha[il - sl - ng_anglakr
Lf ifalgn = alphaTil J.-Ltorurd_f‘.“tnll] /= HB thin 13 a blt of & fudgo; B3 =/
/% it aguates leg nanbars with LT

saca(L] = LEG_DCHN
alpnafi} = algn = lag forward ssfest) Y

5 §* mahaviour nembosa, This 1s OR =4

pehevicur_seciveiil = falam: 4% with 4 bonsvwlouss, Buc will have =/
"'n.] /* o pa changed [or more bamhavlours®/

[—
slemal nacizonsal balance Hoves all logs whioh a

- morizontal amgles of all four legs Decohez =lossr Lo

cagesctlon By which aash 1 Is actually =avad i@ =o

‘heelz_bal_smoust’ defimed af the Eeglanieg of the L

curcmptly &n the growhd Lln s dipectlon sush that
mr=,. Tha peErsancage
rrined by the valua
a.

the sus af Che
of the reguired
ef The sanstart

o'}

weid glocsl_haritental_balancn (int amgleald]d

i

chae i;

iar currest_sam. aogssosd, corcectlom, algad

curpnnt_ass = alzha|0l + alphatl] = alpha[Z] - alphald);
angroond. = sumbes_on_greund il
sursuction = {Inc} (hori:z selames_ameant * {ifledc) curranc_sum /o (21leatd sagroundbld

for Ll = O;
alge = |1

if jueal (% apeula *aally geeatioh GRETACE Soahviciasd A0 AGRITE AF LAasiidve tF
= plas_neipeisign * zorrecitlonky
aipnaill -= anglealll;

alae

if islgn = alphail| > lag forward_sstantl |
angles(Ll] == sigr = (lalgn * alfiks(l]} - leg_focwerd sstensiy
Bata[l] = LEG_DiwN:
alpha[1}f = aign * leg_Iforwsrd_sxcent;
bapavious activelll = Falms:

b
Lf imign * alpha[l] <« -lag_forwvard_amcant] |
esgles(l] += mligm * {{slgn * elpha|l]) = leq_ forward_sxtentci;
batail| = LES_DOWH)
alpsafll = wign * =leg_forward_sstane;:
panavicar_acuivel(il = Tllui

m
Flus_nolse Agd a dogres af solse o tha parasater
PR ‘
lnt plus_nolse (LRt su)
I /* flzat line le for evemly =4
selurh jBw = .3 = {rand|) % S11s d@ distpibuted nolise =
#* int whot, answas, sLlgn)
a0t = sasdil % 10807
angwar = (ghot < J83) T 0 ; {ahst < B6E] ? L & 3; F% uneessgnt thase lines for mocoslly =F
FF dlacribured solae -
alga = 1 = 2 & Jpramdl} % 214
FatuEn dmu = algn & anawezhp e/
I
PR
gut_advance discanos
kil T T
vald gwt _scvanoe_discance (Lac anglea[d4), floac essule [2]F
P
int L. onground = Of
flopat delta_s = 0.8, delta_y = 8,07
for [L = 07 1 < 47 Le+f |
L Ipoeii] (2] « orfsec[L}Q21} | f= L.w. AP mhis Fest ia an ground s
angrosndss;
dolea_= «= Falatlve posil, 0, {fleac) (alphe|Ll) » sogles[f1s) = &
relative_pos(l, 97 [fl=ac) alpha{i|ir
Holts y -= relaclve_ponil, 1, (ficat] [alpme|l| = asgloniill} = %
relative_posii, 1, [£lcst! siphafi]ss
¥
]
LI (argravnd = Q) |
dulta x /= (floac] oagreemnd; /* get average of delta m L
delta_y /= {fleat)] eaground; f* and of dolza ¥ -
I
feaule|[0] = celia_ny
reaulc (1] = delta_yr
i =
i
feintive_pas Funsclen uséd in the calsslation of the change In 3 and y coorsisates of the feet an the cobot
= AEVARCOA .,
- o
fleat relative posilee L, Let 4, floac smglal
I W
zaturn porlil, 3, angle, i(fiaat) betaiil} + pas?il. 4, angle, ifieaz] Batafifis
L]
FLES
apdnte_stats
-— i L)
veld update _statsichar m, beal pos fh, bool seg_fhi
l
zhar Ladex, L, 17
for*fl =0y b < 2; Les} ¥
fee [1 = B 4 = 35 421 |
pes_sraca[n] (L] [3} *= statas _daocay_rato;
meg_scatainl(Ll (3] *= prace_duocay_rata;
I
PEB_stace(nilpoa {70 3 1) (behavieur scclvelnd 7 0 & 1| == stazs_inltial value = §1.0 - ATACA_decky_satol;
rag_ataceniiaeg I3 9 : 1| [bahavicus sctiveini 7 0 : 1| == afaza_inltlal vales * (1.2 - szaca_dezay_cated;
1f {owhavicur_monlteslemginlh |
manliterieg clockini-=1
it Ibekaviour _actiwain|d
indea e Debavlous_&_sonlisclng_peecendhi;
BaRat_mon proc_pes_statainllzas_fb o ? 03 Y
foofile fon_wat darder_of_condifizns{lndes| (0!, erder_of ssedlrionedindeay [27) ¥ 8§ 11423
=ehav_mon_prec_nog stazainileseg.f& 7 0 p 11%
lzzndician_ser tofdac_af condizloass [indax][07, argor_af corditlors|isadex][1i] 7 @ @ 2fe=;
i

33

e

monltor_nest_cenditicn

Argusast:
n = bahavlsuf sisbar

wald =aplter _mest_condlzionichae ni

=har 1, 1

sahewlour_n_ssaltoring_precordin| ++p

1f (order_of coandiciond [babaviews o sonitoring pracssd[s}][1] == 983
bahavlaur_n_smonltoring_precond[n] = Ga

Ewbaviodf soflbtetlingin] = Efuey
|

ie

conilnos menltaring Contlnue sacltorimg s condiclen for the behaviour spaclfisd by the argpusant. Updaces the
monliariey clock, and will stop moalterisg whep asnitor_dursticn La serpasssd. Otherwios,
Lf tha =zorrelstlon bacwean che conditien and feedback la strong encugh, thes it ia adeprad
am a nev precanditlom. [f Lt is not stroog ameugk sfcer sopltorlng, then She condiclion s
dropped {4f 1t L& mlready ln che precondicies lisc, lt I3 cesoved],

e
wold continue_menltoringlchar m)
I
float esrzel;
Lf tnenicoring cleck[nl > moniter durstion)
drop_sondicisn n;
t
Lf {fcorrel = eorris, baha¥ _man _proc_neg_statel) e eorralatios_thrashald)
lu:'ft_znnd-ll'-'lﬂnm. false) ;
mlea lf" (correl <= -sorfelatlon_thcashald]
acops cendltionis, TrEuelj
mlas 1f {l|2ogswl = gorrin. Ganev_Bes_prec_pos_atats)) = carrelacion_chresholdy
& _esnditianin, Troe);
alsw Lf {oorrel <= —correlacien_thresholdl
adopt_conditlonin, feleaip
b
]
in
dieg_coadltion
AEgis=uat
A = pustar of the behaviour which ls seaitering the cenditlan 7
.
wold deeg ccondlticnichar ml
i
ine f PR F
bakavicor meniteringinl = false;
for il = 0 proconditicalm] (11011 f= 93 L)
if iprecondltion(n| [1] i8] == order_of condlticns|bensviour s _seniterieg precond(nf| (0] && %
precondleion(nl 4] (1] == oeder_sf condit bens (beheviasr_n_sonltoring precosd(s|] (151 |
fer {1 preconditiosin] (11031 1= 98 L=y = ahlfe all precenditlons abowae 57
far {1 = 0r § < 37 Je=) £ the menltorad osa dewn By coa *f
En:wd-ltiun[niiilul = progonditloninl [L + 111114 #/* pomition in cha list L
breaky
¥
clear _ssaltoripg_statmindz
I
e
adapt_condit lon
Argumsncd r
5 = nusbef of the behaviour «nienm ls ssaltocing the condiklom
i+

vold adoprt copdiflenichar n, beel valua)
|

bool there_alroady = falas;
ine iz i

"l; behsviour monitoringin] = falaags

Ior {1 = 0} pEmcanctitionin] [1171] = P fasj
Lt ipfeconaltionin| (L[[0] == erder of conditlonsibemevisar s senitacbog precondini (0] & %
pruganditlen(ml L] (1) == order_of_sonditions (behavlou: n_sesitseieg stecoscinl§[110 ©
thera_slgoady = true;
Broak;
I
b

pragopdiclen{al [L} {2} = value;

+f tithera_alcoadyl [
precostition{al L11(0) = order af cossit fopa [Senavioor_n_senitesisg_precenginllio
pracendicionis] [L)[1) = ordar of candizicns{bohavlour s menitosling precondinfil
precopdiclenim]l (£ =« 1] (10 = 58;
]

slear_monltorlmg_scacsint;
i

B T T

zlwar_meniteriog Bhais Soaet Lhe sLotisilon for tmo lues =emavises

%3 I6CE, and TOoset TAD Seeiizring clock

AfguAonk ;
R = SeRAViQUD numDe:

b e N T e

woid clear senlteflng stassichas s

84

i
char &y W

fep [L = 0p 1L € Iy Lles}
for {3 = @r 3 € 3 J==1 4
bahay _son_prec_pes_stane{ab(L10)) = 0,04
behav_son_peec_neq_statsial[1113]
]

=alteripg clock(n) = 9)

i
3ot _behavicur_nusber Fomerlion cetucrns the cesl nusber of a bahawiour givan its group nu=bar and numoes withln chas
- a GEOUP .

ACGUSBRETED
grovg = QUEup nunbsc
group_befaviger = number of tha behsviour withip that group -

char gat_behsvicur_nusbar (chac greup, char groep bahawiows)
3
ian amawar = G5

Far {5 geoup== 2> Oy]
EBRAWEE = nu.ub-r_nf_n-iblvl.w:l_ill_gmdn[q:uup“

raTurn [char]l fanawer + group behaviourl)
]

e
update_output_flle Write Haca for chis cime—scap to tha sucpus file eefarred to by tha 'nfp’ poister.
e e T The templatae for this flls 1 ss follows:i—

t‘.‘:;ﬂup_mm-r ® 1

=8| dlon wectors: leg B _op = 4, leg_n_focwasd & 4, lag_n_backeard & 4
precondls ion 42133

Dehavicuf_actlve

behavieur menltocisg
poa_aCALS

Eeg_stats
behavlour_n_meniterlng_precond
moplraziag_oleck
bohav_smon_prac_pas sSTaLs
bohev_=on_prac neg 3TaTs
puzeaptage posliive feedback
paccantage negative feadback
rulavanos

roliatiliicy

LR
x ka2

HWHHRNHRR RN N
£l

il e
R
Rk

vaid updata_sutpar flleivaldl
1

ime L. 1. X

fpeinef jsfp, =81 ", SlEa_sTep_gouncarii
for BL = 8 1 < 3p 1+
Tor {3 = 0p 3 = A7 jes)
Ein.m'..tlotp, eyeil %, [L == 01 7 leg_n_gpld] s (1 == 1) T leg n_forward|jl : leg n backeardidliq
ter B4 = 9; 4 € dp 1++)
for {3 = 07 4 = 134 jeed
fas (k£ = By & £ Jp Ees]
fprintf lofp, *%=2i ", peecopdlclenlbiliillkllz
for [L = 07 L < 4f 1%+
fprintfafp, "k-11 ", bapavlour aotlvallily
Feeg (L = Gy L < 4; J#*1
fprinct lofp, ==1L *, bahawlous seniveclag(i)hs
Por (L= G7 b < 47 1=+]
for (4 = 0: 3 = 27 J++b
far [k = 03 kK € 353ke~]
Eprinsf lofp, ="w=T.JF =, poa_avecs[Lpld) Lelis
For (L= Or & € 45 L=+l
for % = 0p 1 € 27 Jeeh
Fap (W= By ko= 25 K-l
rprincfiafp, *%=7,3f %, neg_stecs[Lil3][klFs
for [L = Oy L < 45 Les)
fpeiact lofp, =%=21 *, behavicus_n_sanitecing_precendllils A
I L= o5 L = 4; L19+)
n?b;j,“:.r{prp. *R—4l =, moaltering_clock{L]ls
far [l = 07 L = &4; L=+
for [= 6r 3 < 2 J++¥
for [k = B k € 2 k+=]
fprinctiodp, =%=1,3f %, behav_gon_prec_pes _stats{liIllTRIE; 3
For Il = Qf L = 45 L=+
For [=07 3 < 2p 1++}
for (E = Oy K 5 I4 E==]
Epring ficfp, *%=7.3f *, sehav_map aies neq stats[Lili)ieRls
sprinkf(efp. “%=31 =, get_rb_astacipos o arzayliy
faEincf (ofp, =%=3L =, ger_Ib_wtatinog Ik _acreylls
tar il = 03 1 = Law)
fpelaE riafp, = .24 =, salavanco(iipy
for i =0 L= Lesf
farinciolp, my=f, ¥+, =pllabllicydikly
fprintsiefp, "\n"i1: ¥

i
[3STARLE

Progias to check whethar Soudga will be stable for & glven sac of log snglas.

flasluds "top.h™

Fleat gut_naceslflac, LRG, LAED

tnt ar_oa_ground ivoldl ¢

Lot gat_signiint, Llat (], Eleat Q111014
wold gat_stabillicy infoi{fioat [11r
wold chozk_acabieEnt. Eloae(li

i
get_pcablllty info

If fowar thes 3 legs are on the grousd,
vary Lhetabls.

Aeturns & nember Ladicsting Bow stable the remec ia, If J or 4 lega ara on the ground, thes tha
valua returned Ls the shaztest distsnce Dotwesn Che robot CoM and chs Bouncdary of the palyges of
suppors dafiped by the ley positions, A nogative distancs indlcstes that the robos la arptabla,
thas -999.% ls Fecussad,

Lmdleating that tha fabat la

wold ger_stahllity infoifloar answsrilll
i
Lnt sngresifdi

angEound = numbes oh_gesundi)F
Lt (onground < 3)
anawar[0] = -55%,8;
mlas
gheck_stablo langeeund, answarlr

Eakurm:

check_u
e thE polygon of wuppost, And foLurfns the ahorcess

ble Called by stable if thers srs) ac 4 legs oa che grosnd, Chlsulstes whether the robor Co Lles within
distanes fzom the SoM to tha beundary of the palygon.

Ll

wold chack_stapliae (lat onground, flost answsr|3])
i

ing Indaz(4]:

=
LS

ol's

fioar eorpal (41205 /% The mormal vectecs of support palygan.
floar geedianc (407 ¢* Gradisnca of sas=sl veScors.
flaar polns 40021 /% Polpts on polygon boundary clossst to Lod. 7
float distans ? #% piztames of aach peint o C=H,
flgat =in_dis CH
for {4 = 97 4 4= A3 Lew} A Lndaxl]l polnis &5 tha fear whleh LTS
Lf tpeail][2] < ocesacililZi] J* are on che groasd, ay
inSaxjm++] = i;
for (L = By § = onground; Les] F% Gor norsal vectors for sach Llne L
For i = 0; 4 €= 1; J=w) /% Truation of csch llne expressed as =/
nozeal(iil)] = got_mormal f{index(il, ledes{il =+ B30 % ongroundl. J1: i fr - pl.a =1 ':
i . "
for (4 = 0y L < onground; b++] |
L [fabsinormall] (901 « B.B01) | 4= L.&. AF gragdient 1s infinicae "y
palnefdl f6] = B.0;
painc{li (1] = peailndexfl]||(2ls
b
alse |
gradisnt (L] = moemal[lill] / eormal(i}10]) /= Find gradient of nosmal vector. o
polnefli o) = [iposiladexili]]i0] * normal(1](011 =+ {pem{indexflilil] = nermalil]{lill %
¢ (narmallbbic] = dgradiencil] * normallij[101): J% Mow filnd the pelnt on oach line =
poine (il it} = gredlentil]| < polncil|iois £* whizh Ls pespendloular te tho =4
¥ Jo Sppd jwhleh e (0,00 in tha Zebar Lr
discance[Lil = [flese] £+ gnordinate foamal, and tha distance =f
RgEL [P [[doublal Peint(l] (0], 3.00 « powi(dsuslel palntiliil], 2.81k7 4% fre= the palet To tha CoM, =
Lf {1 ==& §§ cdistance(if < =is_sdlscancey |
ain_distapce = discanes{Ll]y
apawes[i] = (flesc] indem(ily
answas[2] = [floac] index[4L = 101 % angroound]:
I
k!
]
apawerif] = [Flaat) gec_sigeicrground, index, polnzl * min_distance;
EWTULEF =
|
F 0 —— —
get_rarmel RaLusfrs the BCh cosponeant of the sormsl wsccer of $he line saspeeting polnta 1 and 3.
Argumanc s
i Ja o i
— - - — s
float get_momal lint 1, Lnt 3. int @)
1
int p. mlgn:
/v Rarmal 'of 20 Tecter (x.¥! La Cy.==p =f
po= 1 - m
lgn = Im == 01 % 1 3 =1:

sotarn [floaci
i

sign * ipaell] (@i = pesidiiprly

S mmEmmm e ——— . —— o ———

ALMDET 0 Fronend Sazurne

e neAamer of

86

fooz 2n Tne ground,

R e o o o R B BT T E T W B e e o e A R s ma w8

int sistss on_ground (vold)

1
ahar ir

ahar sngesand = 0;

for L o= OF § o= 3 dee)
i onground += [pos{l][2] < affsatil}|2014 =+
angraund += (beca[L] == LES DOWH) T 1 : Of

ceEUIn angoaunds

e

et _elgn Razurns 1 1f robot CoM iles wlthip polyges of suppert daflhad by fest, =1 ctharwisse.

-4

inc ger_sigriint sngreund, Ant indes]41, floac polnc[d] [Z1)
|

int slgsr

awiEch (aAgraund]
zass I

AT dincax(D) == 1 i| lpdaxil] == 2}

sign = {(paint [AJ00) = 0 &4 point(li(l] < 0 && paise[2}[0] = &) 7 1

=1

slgn = {palpr|@)fi] = 0 &6 padnt{1)(0] > 0 && polntl2|[0] < B) ¥ 1 3 =1;

bruaky
camm. 43

sige = (peint[0)01] = 0 &4 podnc[E](0] > 0 &6 polpe[20il] < O &5 A
pelnt [(3(0) < 0p 7 3 3 =17

Erank;
1

SMLUER SLgR;

87

re

Pl
e

e

Pamanbar, robet Sod is at (0,00

Casa: 3 lags &fé on the ground
1.m, Lf lage @ or 1 &re of f ground

Case: 4 legs are on the grpond

g

"y

-

i

Foa Furetlons te retufm certesian soordinates of the roboc e lege {lo the robobs coosdinsts fremsl glven
Ehe Leg angles.
L
fincluds "tep.h®
float pos[4][3ir
¥eld get _positlons (voldlr !
flsar poal {char, char, EFloat, floschy
float poal [emar, chap, float, Eleaths
#ouble rediana{ficar)
f
gar_pasltlans Flpd [=2,¥, 3] coordinatas {im robot coordinace framal for esch foot.
Ll

vald gec _pssitloss{veld)
=har i, 35
for {1 = @3 1 <= 3p Lle=}

Eoe [§ = Dp 4 d= Tp jese] .
posliil1] = offeazili(i] = poelil, 1, (fleax) alpha(l]l, |float) betaill) + posdii, 4, (floac] alpha[l), (floaz)] Setali|ls

i
pasl Racurn requasted cesponant af popfitlen of top of log relative to serve axles of rocaties.

Argumanta:
L = lag suskes (6 = 3]
1 = ordinsce (d=as, l=y, Z=r}
anglel = alphs amgle fer lag L
afiglal = bektn amg For lag L

L
Eloar posl (char L, ohar J, floar afglel, flcat spgled)
i
ehar smign:
awiteh (31 [
zagm 01
Flgn = (L == 1 }| L == Z} T =1 i %}
sotern {flpaty
[mign * SEAVOL_L1 * sin(radiana fanglelb}l:
=aps 1z
Bign = [L == 2 |1 L == 3} 7 =1 z 1p
Teture [floac]
isblgn * BERVDL_L1 * ooslradiacs{englallljs
case 2t
reatasn 0,0
defaulr:
retarn 595.%)
i
1
i
pasl Hstufn reguosted component of pealclem of foear of leg relative e tep of lag,
ATgUBERTCS
i = leg nambaz [& = 31
3§ = ordinace (0=, 1=y, I=gi
anglel = alphs angle for lag |
angled = beta angle fer lag L
L
flcat poafichar i, char §, flest anglal, float angied)
L]
int slgma W
awicer (4 |
easm D:

slgn = [L == 0 |F £ == 3 ¥ =] 3 17

return [floac]
falgn * LEG_LEMGTH * zoa[radians{amgleli] = 0
cop fradlans (englalpj by

oEsE f:

Bige = i m= 3 g) | == 3 7 =1 p 1

Tatuen {flsac)
[sign = LEG_LEROTH * =naisadlana tanglaz)) *

ainlredianafangielilig 3
ehsa 3:
recurs (float) {= LEG_LENGTH * mimiradiana (asqleljli:
sefaul:
soturn 99995 1)
i
|
i —
Tasians Conwast degroens into sadlaps
AEQIEMINCS = .

degroes (latager)
- Fa - FRp—— "
Srubie radiapsiflaat | ¥
I

foturn {idcublel Eb / 1BO.0 ¢ 4 P7;

88

LENGTHE . H Spacifion tha dizsensions of Smudge, plos The barts sngles for ralssd snd Jowarsd legs.

BODY _LEHGTH 250

BODY _BREALCTH LE]

SERVIL_Li H
SERVEZ_L] ?

l:m_m:ﬂw g

LEG_VERT _OTFSET 20

e 150

| A

Jceflina LES_UP -18
%

89

i
TOF.H

Spmelflas Insluds files, standasd defimiticns and axternal fenctlons and wariabime.

=

Finclude <acdls. >
Finclude <stdlib.hs
Flnoclude <oath,.B»
Fincluce <tlza,B»
#lacluge *upaful.h™
diaeluds *Lengtha.b"™

d#define offsacs
#daflne affasty
#dafine offsac:

{ficac) {{{{flosc] BOCY_BREADTH} / 1.0} =

SEMADI_L1)

ifloat] (0| ifloac] BODY_LENGTHI 4 2.00 = SERVD_POSITION)

{float] LEG_VERT OFFSET

ddefina TE_STAT SLICE timed g

sELEcn ElosT
agtocn float
sNTarn double

oRtarn fleat
aEtarn inc
amtarn Lot
axtern vold
azrarn veld

aEtose vold
aztesn wald
mztesn wald
sztern 1ot

ssrecn Lot
axtarn float

posl [char, char, float, Eloaklp
pesl lchar, char, flost, Flescls
radiane{ficaz]s

ges_noomal (int, knT, Amklg
Ambar_on ground lvoddlz

bt _signilne, inc (), Elass (10102
gor_stability iafs(floac. [1)s
chack_stablae(Int, Eloat [0y

Inlelafiien leg _positlans (vold))

Ipdclelise learnlng {ealdl @
naxt_tios_wsiepifloat (), flest [], bood "i:
gat_ I scat {char [jig

plpha {41, bataid];
[4EE3E)

axtesn const Float offast (40 (30
sEcarn int

adwahce_angle;
procond data[4} 113} [}, zonitor_dace [4i[20r
sonltar clock datafdis

i
F0

L

e

Ll

r

e
i

pos_fb_srray[FE_STAT_SLICE], neg_fb_acray|FB_STAT_SLICEL:

Lima_STap_oOUNTEC)
*aipy

90

Funselass dafinad In
flia (ma.e

fusecloss defined in
flile lastable.s

fusctloms defined in
fils slgasichm.a

fanction dafinsd im
aim.c

mlobal wariablas

e
=

T
"

L
o

i
L

=

Program Code for the Simulator

Appendix C

s
SIM E¥lew code amd general control routinee for che slmulatlon
fincluds *zvlew/sv_hesders.nh=
Finglude "top.B®
Felafine EHRIKE FACTOR {flparh 2.0
Foafine 3 _DODY_ LEHSTH {figat) [(flose] BODY_LENGIM / EERINE_FACTUR)
Pedafine 3_BODY _BRAEADTH {fimar) ([flsac) BODY BREADTH / JHRINK_FACTORS
Pdefine S BODY_TOPLEFT X {fioat) (8 _pODY_LERGTH £ 1,00
fdefine % BaDY _TOPLEFT_T ifioet) :sfﬂnfnm /3.m
fdefine s_oflsetx jElwar) [(Bffsecs f SHRINE_FACTORI
Fdsfine s_ofimety {float) (offsecy 7 SHRINE _FACTCRI
bdetfine »_stisets {Eipac) (offsetz f SHRIFE_FACTCAI

zanat flost affsec [4§{30 = |

ke

|—affsecx, offsaty, =offsetz).
I affectx, oifsacy, =offsacz),
| sffsarx, =sffaacy, -offsstzj,
i=pffsary, —offsacy, —offsstr}

cenet flos: s _offesc{d] (3] = |

eypadnd STroct
ing

ins

float

floac
| Positles;

Frama
Display
ae

LS
Pacal
Canvas

{=8_affsacx, as_offsety, =s_sffmsczl,
[5_pffserx, = _affsety, =-a_ofl
i s_ofisetx, =s_oifisety, =a_offs
[-8_offaotz, =a_offsaty, -8_offssce]

pasiclen |
o_ceard;

¥_smard)
hip o4 [31:
foof_poald] [31:

frnm

Sdpys

g

canvss _wini
panali, panell;
CANVAK]

struss ltimerval timars
sllctar, Legl4]l2], Lnfo sagiE], behavieur smsgid]| [3), scabllity msgy

Panal ltes
PFositien
bool
char
chac
abar
ehar
char
char
char

inc

inz

flcat

F

Wt lly walue
Poalitian
Pasician
ehas

ghar
shar

imc

wald
wald
wold
woid
waid
wrid
wzdid
]

ARl ALAE azgc.

i

aldpaslcion, neavposlclen:

dsez_fb = faloay

Fo_shsad = FALEL;

infai6ll101;

beta_mnesgage[40};

scabLliicd scring[20F)
bahavloor_infof411350431;

prozond date[di (13} (2], momitor_dacafdlfZi;

pes_fb array[FE_STAT_BLICE|, neg_fb_arcay{FB_STAT SLICE|;

ssalcor_clock datafd])
alpha[4f, bacajdls

cozal_s = 0.0, cetal v = 0.07
rafps

animateo [¥aidi;

=ake _poaltichilnt, Llntpg

gar_naw_peslriss (Posicies, fimac {41

rices (irchy

*gar_preoosdiclon_scring fchar) |
*garC_oondition_stringfebar, eharks
gat_ T atat jchac azcay {1z y
deleta (Pasltionk;

drawiPositlen, int, Lmc. floati;
Irawdattediine finn, Emt. Lns. ins. ineiq

menp EERT *, knt . ARk 4L imE *pr

spdate _diaplay data tEmci;

spdate sEaristicafinkl;

Emat Iﬂr'l*l-_ﬂl arlatigaiwsidi;
=harge_alpha{Pasal_‘res), =Bange_ marsiFamel_lras);

whar "megulid

qulc {veldh, atastveld), scepieslal;
adjust spesdifanal lrvas=, iacls

F* polnter to outpot flle *F

TARVAS_SeFalint {Tanvag, Av_Wincow. Zispldy, Winoow, XV _arootiiscly

rowe, =ols, I, lOOOK)

91

‘caxsl] = |*Frens Lefc=. “Frent Aget”, “Rear Rigne=, “Rear Lefr=i:
. ¥

char *lakall]l = ["Elapasd tios-steps %, "% positive foscdbask 9,
""l ARYAL lve ruchul. :".. “Dlatancs cravellad lem)®,

o f=gals 1%, * o y=azls
cRer behevlour cese (4](3314
111 buttan_® = 4, butten_y = 100
ink Lefo_a = Butkon s, Info_y = butiom_y - 7194
int stanllicy & = LAfa s « & r stapilliy ¥ = info_y + 1407
clma_t na;

atrcpy{beca_sessaga, “bers sngles: down = ")
IETEAL (BACA_Fasdage, Ltod(LEG_DOMN))

STreat (BaTE_Sessage, dp = "}y

stzcat ibuts sssssge, ifes (LEG P

for (L =07 1 < 45 L++] |
atregy ibshavicour _text (1], “BCHAYIOUR =)
srreat ibehavleur rast (1), ltesiflly
sreat (bshaviour_test (L], ®:%1;

k

tnicizslise laq_posicicne{);
mv_lnlt (¥V_IMIT_ARGC_PTR_ARGY,. targe, atgw, NULL]J

frame = (Frame)] =v_crsate (NULL. FRAME,
F LABEL, ~ =i=udge Ilpulacess,

xv_wifiTe, 928,
XV_EEIGHT, 545,
LE]

parell = {Panel]l kv_cressteifrasa, PAMEL,
PANEL LAYOUT, PAMEL_VERTICAL,
SpExdly_SROM_3CADERS, TRUE,
V| A e,
XV _AEIGHT, e,
v_x, a,;
T, o,
WLy

=v_creats{parell, PANEL_ v
PAREL_LAAEL_STRING, *Szarc®,
PANEL_HOTIFT _PROC, start,

NULLIT
£v_eruaca ipansll, PANEL_BUTTON,
XV %, 0

i

w_r, A
BAMEL LABEL STAIHG, =Stope.,
PANEI._RDI'!ITI PROZ, SEEp,
HLL

:l'_ullulp-lmlt. PANTL _BUTTON,
XM, 220,
L LH
FANTL_LABEL_STRIHS, =Duls®,
PANEL_NOTIFY PROC, quie,
BULL) 7

nllder = (Papal ltaml :.*r -.-rlul:“p-rull FANEL_SLIDER.
PANEL_LABEL sTRING

PANEL SHOW_VALUT, i'lLBB.
PANEL VALUE, 58,
FANEL NOTIFY_PROC, adjust_spaad,
FUTL 7
We_eemate [panall, PAMEL HEEGASE,
PANEL 1ANECL STAING. iinaw,
MELEN Y

for [cwws = Op rows € 37 cowss+)
far icols = 0y cols © 27 ealass) |

%

i
i
i

ril

ril

i
i

\
afigin of pansl ltems for sontcolilng leg emg |
arigin of panal lre=s for status [nfor=atlorn
orlgin of stebllilty mesieqe

sead For tles=stasping the oucpurt file =7

Inicialise mensage string to display Beta ang.

inlclaliss arsay of =assags scrings te dlspls
sebaviour nimhers

indax = feols * cewal = {4} = colsl = |3 = sowslb; /% Indas Ls sec to che esrcect lag no. an oesd by slpha[] ete =7

av E—."l-t-l IFanell, PAMEL_MESZNGE,
L _STRI

HG, st {Llndas] ,
x * butzen_= = (136 * solsl,
W_f- button ¥ » [H8 * cowal,
HULL}
=u_ccmato (panell, PANEL_HESSAGE,
AMEL LABEL_STRIRG, “aipha=,
PANCL [ADEL S0DLD, TAUE, 3
IV_X, bucton_k = {136 " gals),

Eurton’y + I0 - |80 * fewad,
kL) ; =,
|II|I l-vl:l-n-n:l [9] = (ranel ltesl zv_cTesteipapell, FAREL WUMERIC TEXT,

X, hrut:gn_;+lu-135':qh.l,
XY, butcon_¥ « 30 = (B0 * rpwap,
PAREL_MAX _VALUE, 11,

PANEL_MIR_WALUE, =45,
PRMELVALTE, alphaiindes],
FANEL WALUT _DISPLAY LEWGTH, 3,
FAMEL_YALUEsTaRen_LEescTs, a,
PRHEL HDTIF'{ PRSC, =hefga_alpha,
PANEL_SLIENT OATA, Lndax, i
NULL) T

legilnder] (1] = (Panol_lteml sv_croatoipaneil, PANCL CWOICE,

X, button_x = {136 = colpl,

T, Sgeton y - 40+ (BD * awel,
FAMEL_CHOICE STRINGE. “Down®, =Up<, WULL,
FANEL_VALUE, -8
PAHEL_HOTIFY_PROC, change_bata, A
PANEL_CLIENT_DATA, indez,
MUELI T

KY¥_Ztanteipanail. PAMEL HESEAGE,

A =ytian_x,
¥, tutzony - 160,
PANEL_LABEL ETRING. BaTa_3da3sga,

\

EULLF

av_screabe (pansll, PANEL _HEDBAGE,
PANEL LABEL_STAING, Lipaa,
HULLH T

for {rows = 07 sows € 65 [awses) |
=w_creatalpesall, FANTL_MESFASE,

v K, Intfa_x,

v T, lnfa y « {18 * rewal,

PANLL_LABEL_3TRING, Label|fawal,

BIUTLL) |

infe saglrews| = (Fanel_ltes) &v_creace (pansll, PANTL_MLISASL,

X, lnfo_x + 184,

oY, lnfo wy + |18 * rowal,

PAREL_LASEL_STRING, infelcovs|,

BMULLY

i
xv_oresce ipanall, FANTL_MLSSAGE,

PANEL _LABEL STRING, Elnea,
HULL) 7
etakllizy mag = (Panel_liam) =v_ciosteipanell, PANEL_MEISACE,
K. stabllity_z.
Y, atabllicy
PAHEL_LABEL_STRING, illbl:lly::;r:m,

MOLLy #

panali = (Fanal]l sv_creace{firscs, FRAWNLL,
PAREL LAYCUT. PANEL_HORIZOWTAL,
_SWoW BCRADERE, TRUT

W _WIDTH, 00,
¥W_HEIGHT, 140,
WK, 280,
oot 4,
WULLI 7

for (rows = 05 rows € 33 rowasel
for decole = O; cola < 23 eclas) I
irstez = [rowa * 21 + foley
Ev_craaCe (panal?, FANEL MLSSACE,
PAHEL LABCL_STRIKG, sahevlous_tess [indaxl.

PANEL_LARCL BOLD, TRUE ;
w_K, 4 = [38g * colsl,
BV_¥, 4 = [TO = rews),
HWULL 2
wv_craate {panell, PAMEL HMESZASE,
EAMEL_LABEL_ ETRING, “Pracspdlcicns Hopltorlng Clesk=,
K, 4+ 1350 ® cslal),
E¥Y_¥, 24 = W * powal,
LLY 2
wvw_srosieipanall, PANLCL _MEGSACE.
AHEL_LAAEL STRING, - - e e
N, 4 ~ [J50 * coiml,
XN ¥, 3 o= 490 F rowad,
HULLKf

Fome L = 0 1L £ 23 4441
pabavicur megllindex) (1] = (Papal icam) EY_crepieipaneld. PANEL MESEAOE,

PRNEL_LADEL_STREHD, Eanaviour_infollncex|[l].

v X, 4 = ([l »== B] T-B8 5 (L == 1) 7 Y35 1 713)
v w, 44 = (70 % powal,

HULLY g

aanves = (Sanvas) xv_coeste{frasa, CAHVAL,

L _PROT, canwan_repalnt,
CANVAS_K_PAINT WINDOW, TRUT.
OFENWIN IHCW_A0RDERS, TR,

Y _WITTH, o,
AV HEIGHT, a0d;
won,] 282,
v Y, 142,
WLy

¥
canvas_win = [Wladow) Ev_gat [canvas_paint winstow [canvas), X¥_xID1J

dgpy = [Bisplay ®1 wv_get (feane, XV _DISPLAY].
ga = Dl-.!l'uitﬂ: Py, Gufanlticzean l-;lfq'!i:

widpsaltioh = saks @izimn (700, Tig
initlallsa_stacizelesi)s
inttislima_learnicgil;

ofp = fopan{“data/date.ouE™, ™a®j;

now = Elms (RILLES

fprlntfiofp, =oMUBLE Simislacion: Fasslon began %ehn®, ctipeléncwll;

arand (ELl=e (BULL) ¢ iyt
xv_main_loopifranel

felpam {S0a]

azleidn; 4

weld guib fvald) i

wald srast ivaid)

Fv_destoay_naletframel;

int waluer
F=_ahead = TRULT
walug = jlat! gv_gac lalldaz, FANEL _YALUZ))

LI fwaiwe > 31 0

93

= {3850 ¢ eala),

"

seed the randon number jonapatos

callod By Julr =eeeas =/

=loed gy Stast oytiap */

clmer.le_velus.tv_uses = (139 = walua) ® 10004
el=ag. 1:._;5!.-“-1 cv_usec = {130 = walus) * [000;
moklfy_pwt_LElsss_ funiciframa, anlmata, I[TIMER _REAL, &timer. MULLI;
I
alesa
4= puren bt oaff 44 - .
pBLLly met_Ltlmer_Fung(frass, HOTIFY_FUHC_WULL, TTIMER_REAL, Nl #Uils

f* advancs ons frase */
aploatedhy

uaid atep{vald) 7 called by 55op Eution *f
i

go_ahead = FALIE;

sacliy_sec_ltimer_fumcifrass, HOTIFY_FUSC_WULL, ITIMER_REAL, WULL, HULL1:
b

vold sanvas_repalnt (Camves csnvas, Xv_Window paimt _window, Olaplay wdpy, Window zwin, Xe_scaccllisc =ares)
i
ink widih, Helght:

width = [ist) 2v_ger [paint _windew, W WI0TI ¢
nelght = (intl wv_ges {pRint_window, &4_HEISHT)

¥CleacAces (dgy, Ewin, 0, 9, width, halght, FALSEl;
draw{oldpasition, 0, 0, 9.01;
§

Horify valus animateivold) 4% draw Emudge at fmzC "'.F
= /% cioeg—esap

floac advance_valmes (], scable_veluas[10j

Asxt_tima_stap (advance _valuss, sceble_valuss, last_fmiz

uupnultlon = get Mv_plurll:nrllnl#ﬂlllliﬂﬂ- adTanos H’Illﬂ'llr

dalete oldpanit Lol

drawinewpositios, (LlaL) stable_valuenil|. [Lnt} stable_walues|2f, scable_walusa(olb;:
sidpasiclon = aswpesitlons

racurn HOTIFY DONES
i

wold adjust_speed (Fanel_LEtem itewm, law wvalus)
i

if {ge ahesd == TAUEN [
Lf ({valuos = 01 |
cimer, Lt _wvelus.tv_useo = {130 - waluel = 1000;
clmar. fr_incervellEv_uses = {130 = welus) = 1340;
mr:it;- aat_ltimac_fune(ffass, snlmate, [TIMER_REAL, stizer, MULLI:
b oalaw

/= tues it off =/
nonlfy _set_itiser_funciframs, NOTIFY_FURC_WOLL, ITIHER_REAL, WNULL, HURLIZ
i
I

vold chenge_sipba (Fanel_item Ltem] F* manuzl adjuscment =@ T/

| £+ glpha valuem fre= =
int 1 = (lpz) =v_gec{itam, PANEL CLIERT_DATAL: F* gpnsrel panal L
alphafi] = mv_gotiives, PANEL_VALUE);

1

vald eRange beca{Panal_itas ltami #* panoal sdjustasnt of *f

L] £* bota waluea [res =
It b o= [inE] #v_get{item, PAMEL CLIENT_DATA} #* coneral panel o

potafl] = izw_get {ices, PANEL WALUE} == 1] T LEG DOWH @ LEG_UF;
]

Poalzlan u:-_pn:.l.:iunu.l;‘t z, Lot ¥l 4% greace a naw Poaltlion =/
i £ datas miructnre 14
Paslbion g
char - El‘
ime half heblght = ([inc] =v_get {camwas, CREWAS_MEIGHTI) /& 24
get _paslticne il !

-um m_coard = my
¥ “coord = half helght = y % half malgmc:
e Niie g 4 < Ar Teed
fap {3 =0 3 % 3¢ J++b 0
rezp. hlp paa{l] 4] = a_offssciLl] (3] = ipealfl. 3, i(fizat) alphali|, ifloac) bata(l]l / SHRINE FACTORD:
ramp, Faek_pesa(l] (1] = pos(il1i} / SHAIRK_FACTOR:
|

FATAUCA TE#Epr
1

Position get_new_pasitioniPosluies old_pes, Clest ln‘uannl_wllu-":l.ll
1

Poals lon Laop; A% ualipas passed lnta she functlon
anar 1. ¢
ing nalf boighst = {ilntl zv_jet [canvad, CAKVAEE HEICSHTE| ¢/ 3

femp,d_cousd = (leld_pes.s_esarg - ilati 5 _BODY_TOPLEFT_X - (LAfl ladvanes_waluesil| ¢ SHAIME_FACTSAIL 4
¥ [iilntl ®v_gec (canvas, GCANVAS WIDTHI! = @inat) F_SGD¥_lENGTHTY
= {latl §_200Y TOPLETT X7

% rEEuTnR 8 now FOSLLiIGA JALA SRTUOSUES
/* baped gp the old aEfueture Amd BAVAROE +-'

o

teOR. ¥_Seerd = hall_he halght = | iold pos.y_cosed = half Relghoi - (inr) jedvesee_valoesi0) SHRINE_FACTOR) % =alf selghe:

Tar 1 = 9p 1 < 4
f=p |1 = Op 4 %
.-unp.:ltp_;: wl
tenp, faet _poa

= ;ns 1'

fEomaT! alpsacl), [EIsat! =mataflll J SEACHA_TACTTRIL

94

- e L e ST e Ul S Sy

e ey L

e L

LS ES =

LLy ¢
]

fer f1 =Dz L = & lwwd
1f (screpiishar Wy _gon iinte_migldl, PANEL LABEL_ETATIMGI. imizfl|l "= OV
av_aec itnis =agiil.
Famcs_tanfl STAING. intolii,
RULL) 5

11 [@trncspliener *} xv_get {stanllity meg, FANEL_LABCL STRINGI, scamlilisy_striag, 1z '= 21
2w_aet (stabllley_msg,

m:;_ut::._srﬂ:m. stabiilty_stilng. L b

[ER

fme |1 = O3 L o= 4} 1v=)
far [j =01 § € 24 1++4 >
17 {ateemp?tchac #3 &v_get {behaviour_megli]()], PANEL IABEL_STRINGH, beha¥leur_iafoliffiil i= 00
zuv_sac {bonaviceur =agli] L1,
pm:L_LaEEL_!-TRIHG. banaviour _Lnfalil [4],
NUOLLY 2
1

wald updara_scatistieslec stabla flag) 1l
i

ahsr ir

speepy [Anfold],. leoaiclms step_countasdF

seeepy infoill, itseiger_Ib_mtas [pos_[B_sssay) il
ac-cpy (infolil, Ltesigec_fo_stas ineg_[B_sseaydbl:

stropyinfe{d]. leesiilntl (totsl _x F LO.0K104
tccpy(lnfais], Lcoaifint) (cacsl_y & 10.00F1T

A {wtablae_flagh
ropyiacebllizy string. ™ S=udge is atakle®i; ¥

alie
arpepyiataEllity_strimg, “SHUDGE IS OHSTRBLILCI S

far fL = O Lo« ok Lesl O
wtropy (tshevlour_Lrfelll (8}, ger_prasondicion scoingilels
LI {esnitor_clock_dseajl] == 0)
scropy ibahavical_infol[i) (1}, *=i;
ales
sercpy (bataviowr_infolil (1), get_cosdition_siringimcnitor cataili]i0], monltor datalillzijbh:
stocpy (bahavloar_bnfeil] [2], lrea|Ssslver_clook dscalllil:

]
(]
chas *get_precendition_atring tahar nl #* fametlion FeCurFns & shar arcay of sil *f
i 4% garront precanditicns for behavieur =f
chag L1t ¢#* m oaueitable for display on Che paral 4
chat arawee[43);
SLECpy lafmuer, ""h7
fer (£ = 0y precond_dataln]{SB(1] 3= 887 1=} | ¢® 0 mepka end of preccndlclon liat. o/
if (L = O}

scroat isnawar, =; "}
scroat (answer, ge%_esadltiesn_steing (peecond_dazaini (20001, precond davaim] (110L1131
BEIZAT [Answer, = "1
aLreat fanswer, (precoad_Serafmr] [L] (2] == c2uel T T 1 SFT1;
]

Teturn anavwed;
L]

chas "get_cenditlon_ssringlchar o, chag ol #° fopctlion FeLufha & char asray -4
i /% descciblhng & parricular eanditien =/
char answec{Si; 5\ ¢* le.q. L1F] sultabie for display =m */
#* the panol "W
48 (n == B0 || & == 58}
st repy [Bnawar, *=1f #% 55 1p » default walua 57
slae |
sEESpy (anawar, "L=1:
scroat [answer, Lteaimily y

BErcak [Angwer, (A == 0] T *U* 1 [n == 1} 7 *F° @ T@%17
¥

TETUTn anawarcy

I
Lot get_Ib_atat [char areay(]]
I

lar i, countes = GJ

Lf itims_stap cocuntes == 0]
reters O

for [L = 05 & ¢ FO_STAT SLICE & L ¢ Eloa step_countez) Lesj
esantaf «= arcay[l]r

return (cownser * 100 4 ips
!

woid initlslise_ptatiatles iveld) 4% Called cheém, AL The atart of Ehe *F
! £ giaulae lan wy
shar ¥, 42

ACEcpy {intold]l, =0=i;
stfcpy (infolll, =0%i;
wrrepy (lafsi2), =a=):
screpyiinfaidl, "=;

wtropyiinfald), =0%1r

96

strapy {infa[8), 0%}

for [=05 1 = 4y Ras) |

for {1 = 03 1 <25 J*+) |
pragend_dacafdi @] (1] = [1 == L} T 9% @ Oy
monlior_dacallil}] = 98

[}

Aonltar_slock dstafl] = 4

For {3 = 0 1 €« 3 J=+|
sbrepy Meebavions_lnfoil) (11, ==k:

1
waid swapilst "a_i. ipt =y_1, int *=_3, Lne *y_2|
1

i Bmop X, LeBpyF

Tamp K = *x_lI
Tomp oy o= ty_Ld

w1l m g 3f
vy 1 = 'y 25
m_1 = e=p_3;
By 3 o= Samp i

chas =itea{inc nj
4
int 12
Llnt negotive = FALSE:
chac =aunt = I;
chear sEflngfld};

far (L = q; §0L /= 101 [= BY; commpte+';
LB (a0} |
GaERL)

n o= =ng
I negative = TR

for {strimg|-—coumtl = *\0°p moumc > Qrl 0

stringl—caunt| = [esunt == 0 &4 negaclvel 7 '=*

" oS= 10
i

smLuzn IEFings

Fl

L
Ll

L

L

Converrs an lNCeger Lo & char arcay

tongeh of coturmed stelag ls at lesst 2
finziuging %0 at spdp

count Aunner =f diglra

to paka space for the =isua alge

i

L
.

By ey e e e e

Appendix D

Program Code for the
Microcontrollers

ETAGE | "wosrsmusassrenrnenit s el IR RN EF SRR T RN

Sutput valtss ante Fort B pin 1. Cycls thiough s ssrias of cthres
pules widtke to drive the secvo through & cycls of three posltiona.

At 4MHe, Lestruealos cyeles taks 0,000 me. The RTOC prescaler is
off, &nd che RTCC starne et 280=(13=2} =326, giving an LntacTopt
avary 0.03ima.

Fin Duia
b 11 Forr B
] urosed
1 SUTPEE O BRCTR
2=7 Ena el

includs "g1iplesisyploreg. squ”

OPTIONE TOU ik

starzl] EQOT il § duratien of hi signal
eoantl IO ook ¢ las ElmmE

nignal EQU OER F 0= low, 1 = high

oz ite [=11 Liin] § 20ms timar, L350
=ti0b EOD 1ok 7 2me timar, HSR
sanding EOU 11m 7 signal high rleg
esusc_a EOU 12k

eaune_m EOT 1an

eoant_Ll DOU 14k

poal ECT [k o poal={Jlx.033] =0, $3=a

r
1 EEr 4T i posi= (478,031 =1.00ns
x! QU B E3" (] pﬂhlih:ﬂ:?ll‘?-ﬂm
st l0a OO 1 E L ¢ signal awve

&Y
Bt d0b Lo [(2725641131 2. 032=20mn

sracyt IO nrZ3E" §p for s .03Zme LIntersupt
(226 = 286 — (32 = 24}
s (1
=irn lade 7 lniclallescion
o 24n { lmcesrrupt rowucine

q
a
n

global interrept disable

reast RTCC counter
clear RICC flag
wpdate I0ms Tisar
Lf I0ma pot axplred

ik
1

:

rapac counters
Y sEcT20b

BEF sanding, @ 5 sen ssnding fleg

CALL sanchi

2ET INICSH, SIE i glebal Lstercupt anable

RETTIE i
updatel BIFSC sanding, o ; La sigaal BLght

EALL esatl

BEF INTCIH, GIE : glebal Lmcerrupc anaole

sanIfct HOVLE h* FF?
GOIT updatal

(=0 DEETSE eommtd, 1 i updste Ima Elmer
RETURH
BEF sanding, o ; Elaas sandleg fLadg
CALL mandla]

aandhl HOVLE 1h
sigoal
CALL nand
RETURH
sandio CLAF algeal
CALL saad

kTR i

SwEnd HIWLH TRISD
HOVWF FSR i bndlirec: co TRIFR regqiates
HILH " ODOGOODOD- i saL &ll Past 0 plas Lo &8fp

98

A A e T

oL EE T e T - i T e e T R LT T

A P o

e

ill H

sandd

TG
inltc

loap

wale

cima_s

ERT T

aanflg

HOVHE
RETUR

Parc_8, 1

Fors 8. 0
Cons

INTTOH, ADIE
TRIZE

FER

b GOO0E000"
L

o' 20000011
Part_H. 1
AORES, w

L TS
BFI11E11c40’
Parkt_@, 1
config

PorT_B, @

amnding
arTIoNS

FER
B 013030007
h

strnlla
ot 20
strtdih
[3 1-1"1

eonfly
ADLCHD
B 1@100000"

5B
35,
SEE

edne_a; 4
=lse 3

D* 39
count_a
El=a g

sount 3. b
elem &

De10o*

BT lCnaGoon”
Ih

for dabugglng
digamls ASD coEverslons
¢ dlsgable ASD lAEefrupLs

elsas blie I=7 of Post B

mEsk ut Site O and 1

af noles Lntarfersace
for dabugging

cloas sandlng [lag

1 sev prascalar =ff {1:1)

indcialize J0ms Tlmar

FO

o

disabies A/T convarsions
Epable ATCC Lnbacrupts

initinlize lhaz esunc

-

send ieiclal Bl algnel

locp chamges Yalue af
scertl svery 1.5 ssconds

]

anable AL convertas
anable ASD Intezrupca
begin an A/D converslan
wale fer =1 seocnd

7 mach RGP Lla | cyelo

runaing at AHHE,
siah cysle taken (Oims

thare are 7 HOF3
this ca 1 or 2 cysisa
Ehis 2 ayclss

walc for (95Ins

|L.m. .2FBms &t 4HHzZ:
Ysaaule = wait eounz_m *

¢ owain fer O.1e

rosalt = wnit weusc Lot

: Al peer A pins are LY

P ALl Pers A gina analogue

b

101

indismst e TRAISH raglster
sat all Pare B pins Lo ofp

road ASD sopvarsion resull

writs e bics 2-7 af PorT B
facenfigues Port A Ip casse

Esalflgures Pert A corsactly

rasuls = wals Sswar_a = 10 oyclas
l.e. count_2 7 .Dl=s [-.002osld
= 4

the =ime = loop takes ¥ syclas

taa

