THE COSMOS ARTIFICIAL LIFE SYSTEM*

Tim Taylor
Institute of Perception, Action and Behaviour,
Division of Informatics, University of Edinburgh,

5 Forrest Hill, Edinburgh EH1 2QL, Scotland.
tim.taylor@ed.ac.uk

Version 2.0f
31 May 1999

“This paper is a substantially revised and updated version of DAT Working Paper No. 259 [Taylor 96].
tSubstantial revisions and addition of new material, 31 May 1999. Version 1.0 published 8 October 1997.

Contents

1

2

Introduction
Cosmos Design Philosophy

Preliminary Issues

3.1 Representation of Information L oo
3.2 Spatial Structure Lo
3.3 Time Slicing and the Top-Level Algorithm
3.4 Naming of Organisms

The Structure of an Individual Cell
4.1 OVErVIEW . . . ot o e e e e e e
4.2 The Genome L
4.3 Regulators: Promoters and Repressors
4.3.1 Promoters and the Promoter Store
4.3.2 Repressors and the Repressor Store
4.4 The Translator o
4.5 The Energy Token Store
4.5.1 Cell Death
4.6 Cell Division and Reproduction o L.
4.7 Inter-Organism Communication Structures
4.8 Other Structures L
4.9 Parallel Programs (Multicellular Organisms)
4.9.1 Topology of a Multicellular Organism
4.9.2 Emergy Transport
4.9.3 Fission. L
4.9.4 The Cost of Multicellularity
4.9.5 Organism Death

The Programming Language and Representation

The Environment

6.1 The Grid e
6.2 Distribution of Energy Tokens
6.3 Collection of Energy Tokens
6.4 Moving around the Grid L
6.5 Inter-Organism Communications,
6.6 Environmental Information L L oo Lo
6.7 Mutations and Flaws L

Actions and Interactions

7.1 TImplications of Intercellular and Inter-Organism Communications
7.1.1 Intercellular Communications
7.1.2 Inter-Organism Communications

The Top-Level Algorithm

Global Parameters

S ot ot ot Ot

© 00 0O O 0o O D

e e e e el e
TR kWD OO ©

15

16
16
16
17
19
20
20
21

21
22
22
22

23

23

10 Input and Output Files 24

11 Major Differences between Cosmos and Tierra 24
Appendices 28
A Global Parameters 28
A.1 Inoculation e 28
A2 Startof Run 28
A3 Terminationo 29
A4 Environment Lo 29
A5 Organism oL e e 31
A6 Cell 31
A7 Mutations and Flaws L 32
A8 Input and Output 32

B The REPLiCa Instruction Set 34
C Predefined Ancestor Programs 40
C.1 Ancestor Al o e 40
C.2 Ancestor A2. L 41

D Running Cosmos 42
E Format of Input and Output Files 42
E.1 Imput Files e 42
E.1.1 The Genetic Code (genetic_code.ini) 43

E.1.2 Parameter specification (params.ini) 43

E.1.3 User-defined ancestor programs (ancestor.ini) 44

E.2 Output Files 45
E.2.1 General Information About Run (run.log) 45

E.2.2 Species Concentrations (concentrations.dat) 46

E.2.3 Species Details (species_current.dat, species_extinct.dat) 46

E.2.4 Information on Individual Organisms (morgue.dat) 46

E.2.5 Phylogenetic Information (phylogeny.dat) 47

E.2.6 Neutral Model Data (neutral.dat) 47

E.2.7 Backup File (autosave.ser) 48

E.2.8 Visualisation Output Files 48

F Implementation Details 49

1 Introduction

This paper describes the ‘Cosmos’ system, developed to study the evolution of self-replicating
(parallel) computer programs. The design is based upon Ray’s Tierra system [Ray 91], although
there are some significant differences. For a full account of the motivations for building Cosmos,
the reader is referred to [Taylor 99].

2 Cosmos Design Philosophy

The basic approach employed in Cosmos to model an evolutionary process is the same as in
Tierra. However, many of the design details are different, reflecting the slightly different goals
motivating the two systems. One of the original goals of Cosmos was that it should be able to
support self-replicating programs with some of the features possessed by simple cellular biological
organisms, such as mechanisms for communication and response to environmental stimuli (which
may potentially promote coevolution between organisms), and mechanisms for regulating the
genome (which may promote the evolution of differentiated programs).

Before continuing, clarification should be given of some of the terms that will be used when
describing Cosmos. Biological terms will often be used, as these tend to be somewhat more
concise than the associated terms relating to computer architectures. While these biological
terms suggest the analogy that was in mind when Cosmos was designed, the analogies are
certainly not exact; many simplifications and modifications obviously have to be made when
designing such a system. With this is mind, the meanings attached to some biological terms in
the present context are listed in Table 1.

Term Meaning in context of Cosmos
Genotype The instructions that make up a program (the host code within a cell).
Genome The structure within a program which stores the program’s instructions.

In the current context, the terms genome and genotype are used more or
less interchangeably.

Phenotype The action (behaviour) of a program as its instructions are being executed.
Organism A single program, which may be unicellular or multicellular.
Cell A single process in an organism. This term encompasses the host code and

any foreign code that may be present, together with associated working
memory, buffers, registers and other structures.

Unicellular An organism containing a single cell/process (in other words, a serial pro-
gram).

Multicellular ~ An organism containing multiple cells/processes (in other words, a parallel
program).

Table 1: Definitions of Biologically-Related Terms Used for Describing Cosmos.

Perhaps the most significant difference between Cosmos and Tierra is that programs in
Cosmos cannot directly read the code of their neighbours. Cells can only communicate with
each other (within or between organisms) by message passing (described in Sections 4.7 and
7.1). Apart from this intercellular communication, each cell only has read, write and execute
access within its own cell boundary.

!The name Cosmos stands for COmpetitive Self-replicating Multicellular Organisms in Software.

Among the other important differences between Cosmos and Tierra are a number of features
in Cosmos intended to encourage the evolution of diversity and complexity? in the competing
programs, rather than just the optimisation of their ancestral algorithms. The most important
of these are the energy token allocation system, described in Sections 4.5 and 6.2, and the
regulator system of promoters and repressors which governs the execution of a program’s code,
described in Section 4.3. The regulator system is closely linked to the programming language
in which the self-replicators are written, introduced in Section 5. Further differences between
Cosmos and Tierra are discussed in Section 11.

3 Preliminary Issues

Before going into the details of program representation and behaviour, a few words should be
said about some general features of Cosmos.

3.1 Representation of Information

The underlying representation of many of the components of the Cosmos system is the Bit-
String. Four different types of BitString are used: BitStrings, InfoStrings, WritableInfoStrings and
EnvironmentallnfoStrings. These are defined as follows:

BitString A vector of binary digits (i.e. a string of 0s and 1s).

InfoString Like a basic BitString, but also has a type associated with it (an integer 4 in the range
0 <i < 15), and a pointer to the current read/write position along the string. A string of
bits belonging to an InfoString cannot usually be altered after its initial creation—it can
only be read. The only exception is that an InfoString may be mutated, which entails one
or more of its its being flipped at random.

WritableInfoString An InfoString in which the bit string can be written to as well as read from.

EnvironmentallnfoString An InfoString that has an intensity (a non-negative real valued num-
ber) associated with it.

3.2 Spatial Structure

The shared space in which the organisms reside is a two-dimensional grid, divided into discrete
squares.® Each cell in the population is associated with a particular square at any given time.
This environment can be configured to wrap around, or not to wrap around, in each dimension.
More information about the environment in which the cells live is given in Section 6.

3.3 Time Slicing and the Top-Level Algorithm

The Cosmos operating system simulates the parallel execution of a large number of programs. As
Cosmos is actually implemented on a serial machine, a form of time slicing is required to achieve
this (i.e. at each time slice, a small number of instructions are executed for each program, one at
a time). The top-level algorithm that implements this procedure is described in Section 8. At

?Many of the design features of Cosmos were intended to promote the evolution of multicellular organisms
from unicellular ones.

3The system has been designed to deal with arbitrary n-dimensional environments, but the current implement-
ation requires some minor revisions to allow this.

each time slice, it must be decided how many instructions are to be executed for each program.
Possibly the most obvious strategy is to execute a fixed number of instructions for each program.
However, from an evolutionary point of view, this would introduce selection pressure for small
programs because, all else being equal, longer programs would take a larger number of time slices
to reproduce. This may or may not be desirable. The decision of how many instructions to run
for each program at each time slice is therefore governed by a couple of parameters which can be
tuned by the user. Specifically, a program of length L bits is allowed to execute N instructions
per time slice, determined by the formula:

N = et_value_constant * L&t-v@lue_power

N is rounded down to an integer value. This allows considerable flexibility: for example, if
et_value_power is set to 0.0, then each program executes et_value_constant instructions per
time slice, regardless of length; if et_value power is set to 1.0, then the allocation is linearly
proportional to program length, so evolutionary selection is size-neutral (all else being equal).
Further details of time slicing are given in Section 4.5.

3.4 Naming of Organisms

For the purpose of analysis of the system’s behaviour, individual organisms are given names
according to their genotype. The name is composed of a number followed by a string of (usually
four) upper-case alphabetic characters. The number is the length of the genome (expressed as
a number of bits) in the organism’s initial cell. The character string is a unique identifier for
that particular genome. Ancestor organisms inoculated into the system at the start of the run
are named with the character string AAAA. If an offspring has an identical genotype to its
parent, it will share the same name. If the offspring has a different genotype, then it is given
a new name (the operating system keeps track of which names have already been issued, to
avoid duplication). For example, the first organism to appear in the system that differs from
the inoculated ancestors will be named with the character string AAAB. Should all character
strings up to ZZZZ have been issued for organisms of a particular length, an extra A is added
to the string (so the next organism of that length with a different genotype to its parent will be
named with the character extension AAAAA).

4 The Structure of an Individual Cell

4.1 Overview

The basic structure of a single cell is shown diagrammatically in Figure 1. Each cell is a
process running on the (virtual) Cosmos operating system. A cell has its own program code,
working memory, stack, registers and various other structures. The major features of the cell
are explained in the rest of this section.

4.2 The Genome

The Genome is an InfoString (i.e. a BitString with an associated type), containing encoded instruc-
tions that the cell can execute. Which sections of the genome are translated into instructions
and executed is determined by the action of promoters and repressors (see Section 4.3). After

*As T am usually referring to the contents of the Genome, rather than to the structure itself, when I use the
term ‘genome’; I will use the standard typeface from now on.

Send or receive promoters and
repressors from other cellswithin
the same organism

Receive messages
from the environment
\

/ rreeee XXXX XXX .
! [0001/ 0l10010011100010101010l1011000101001101001001011101011000110111110}

"{ PPPPY;;;

\ Received Message Store

1101/100011011
1000/ 10011110 Translator

0001/111101110111101 100001 -> jrp
0101/1101

100010 -> nwmwrite
100011 -> nwm di vi de

Promoter
Store

Repressor
Store

Nucleus Working Memory
fo1101110111011110)

Flaw Rate

7 Communications Worki ng Memory
(001101101
T

Energy Token Store Stats’'Housekeeping Info

2
Reproduction or , AN
cell division ! P, N
V N
Collect energy tokens

Send energy tokens to other

cells within the same organism from the environment

Broadcast message from
current grid position

Key for Bit Strings:

A bit string containing a ‘/' symbol

is a "typed" bit string (an InfoString)
The digits to the left of the '/
specify the type of the string.

Key for Regulator and Translation Symbols:

ppp - Promoter Binding Site (marks start of currently active region)
xxx - Repressor Binding Site (translation stops at these sites)
rrr - Current Position of Reading Head

Figure 1: The Structure of a Cell in Cosmos.

a cell has been created, its genome cannot usually be altered, except by the action of mutation
(see Section 6.7).

4.3 Regulators: Promoters and Repressors

The translation of the genome is governed by regulators. These are (usually short) BitStrings,
and come in two distinct types; promoters and repressors. The cell has a separate store for
each of these two types of regulator, and each store can contain a number of regulators of the
appropriate type. Regulators may be added to the Promoter Store and Repressor Store in two
ways: either by the cell creating a new regulator (by executing an appropriate reg_create
instruction),” or, in the case of a multicellular program (see Section 4.9), by the cell being sent
a regulator from a neighbouring cell. A cell can also remove regulators from its Promoter Store
and Repressor Store, by executing an appropriate reg_destroy instruction.

4.3.1 Promoters and the Promoter Store

The Promoter Store is an ordered list of promoters. Only the promoter currently at the top of
the list is active at any given time. The active promoter specifies the position along the genome®
at which translation will begin. When a new promoter becomes active, a search is made along
the genome for a pattern of bits that matches the promoter bit string.” If a matching region is
found, the promoter is said to have bound to that region, and translation of the genome begins
from the first bit to the right of the binding region. If no binding site is found for the active
promoter, or when the translation of the current section of genome is terminated (e.g. when the
Read position reaches the end of the genome, when it reaches a repressed region, or when a stop
instruction is encountered), the active promoter is deactivated and placed at the bottom of the
list in the Promoter Store, and the promoter which is now at the top of the list becomes active.

4.3.2 Repressors and the Repressor Store

The Repressor Store is a list of repressors, but, unlike in the Promoter Store, any or all of the
repressors on the list may potentially be active at the same time. When a new repressor is added
to the store, a search is made for a binding site on the genome,® in a similar way as for the active
promoter. If a binding site is found, the repressor is said to be bound to the corresponding area
of the genome, and that area of the genome is said to be repressed. If, during translation of the
genome, the read position moves onto a repressed site, translation ceases at that point and the
current promoter is deactivated.

4.4 The Translator

The process of translating the genome into executable instructions is illustrated in Figure 2. As
the read head moves along the genome, it passes the string of bits that it reads to the Translator.
The Translator has a table that maps bit strings to instructions in the programming language of
the cells. As soon as the incoming string of bits matches an entry in this table, the Translator
executes the associated instruction and the read head is moved along the genome to the next
unread bit. In the current implementation, the map of bit strings to instructions is hard-coded

®See Section B for an explanation of the instruction set.

50r on eligible InfoStrings in the Received Message Store. See Section 4.7 for details.

"The search begins at the current Read position on the genome, and proceeds outwards in both directions
simultaneously.

80r on eligible InfoStrings in the Received Message Store. See Section 4.7 for details.

into the Translator, all instructions are encoded by bit strings of equal length (six bits), and
all 64 possible six-bit codes have an entry in the table (which means that in some cases, two
different six-bit codes encode the same instruction). Any binary string of length six is therefore
guaranteed to decode to a valid instruction. This hard-coded mapping is defined in the system
input file genetic_code.ini, described in Section E.1.

genome read-head

—
rrrrrr

P:1110100; | R11011 R 10110
/ ! \
promoter 7 repressor repressor

Prae " read-head begins at first bit after promoter,
Pis translating one instruction at a time,
then moving rightwards along the genome.

i _____translation into executable code ____
“--+=/010001 —= push a
! . | (Promoters and Repressors are
' — I
i 111011 I nC_C 3 produced and destroyed by
'010010 —= nwm wr |te 3 instructions in the language, so

that a program encodes the

111001 —= et_collect
010111 —= (sterepressa.

Translation stops here)

control of its own execution)

Figure 2: Translation of the Genome.

In future experiments with the system, the hard-coded mapping from bit strings to program
instructions may be replaced by a mapping which can vary from one cell to the next, and which
can evolve.

4.5 The Energy Token Store

A large number of cells may exist concurrently within Cosmos. In order to run the code of all
of these cells, the processor must time slice between each cell, as described in Section 3.3. In
that section a formula was given which shows how many instructions a cell with a genome of a
given length is allowed to execute at each time slice. However, for the cell to actually execute
this number of instructions, it must pay one energy token to the processor for each instruction it
executes. A cell has a store of energy tokens (which it collects from the environment as described
in Sections 6.2 and 6.3). Furthermore, a cell’s Energy Token Store may be leaky, in which case a
number of energy tokens are lost from the store at the end of each time slice, in addition to any
that were used to pay for the execution of instructions. The leak rate of the store is determined
by the parameter ets_leak rate per_timeslice, described in Section A.

4.5.1 Cell Death

If the number of tokens in this store falls below a particular threshold (defined by the global para-
meter ets_lower_threshold, described in Section 9), the cell dies. Additionally, when the max-
imum number of cells allowed in the system (as defined by the parameter max_cells_per_process)
has been reached, the processor will kill off a number of cells which have the smallest number of

stored energy tokens,” in order to make room for new cells. It is therefore essential that a cell
maintains a reasonable level of energy tokens in its store. (There is one other way in which a
cell may die—it can terminate itself by executing the kill instruction.)

When a cell dies, any energy tokens remaining in its Energy Token Store are distributed to
the local environment. More information about energy tokens is given in Section 6.2.

4.6 Cell Division and Reproduction

It has already been mentioned that a cell only has read, write and execute permission within its
own boundaries. Considering that the primary function of the cells is to make copies of them-
selves in other areas of the system’s memory, this may seem like an odd restriction. However,
the mechanism of cell division and reproduction employed in Cosmos was inspired (albeit fairly
vaguely) by the process of cell division in biological organisms.

The Nucleus Working Memory. FEach cell has an area called the Nucleus Working Memory,
which is just a WritableInfoString. The cell can compose arbitrary bit strings in this area,'” but
in the normal operation of a self-replicating program, it would construct a copy of its genome
here. Thus, rather than directly writing instructions one at a time to a new area of memory (as
in Tierra, for example), a Cosmos cell copies its genetic information into its own Nucleus Working
Memory. When the genome has been copied in this way, the cell may issue a nwm divide or a
nwm_split instruction. These have the effect of transferring the contents of the Nucleus Working
Memory into a new cell, which will be placed at a nearby grid position. The former instruction
creates a cell which is completely separated from the parent cell (i.e. a new child organism),
whereas the latter creates a cell which will remain a member of the same organism (i.e. an extra
process in a parallel program: see Section 4.9).

In either case, upon division the contents of the Energy Token Store, Promoter Store and
Repressor Store are divided equally between parent and child cell. The other main structures
of the new child cell (i.e. the Nucleus Working Memory, the Received Message Store and the
Communications Working Memory)!! are initially empty.

4.7 Inter-Organism Communication Structures

Two major cell structures remain to be explained; these are the Received Message Store and the
inter-organism Communications Working Memory. These two structures are both concerned with
communications between organisms. The former is used to store incoming messages from other
organisms, and the latter is used to compose messages to be sent out to other organisms.

The communications aspect of these structures is described in more detail in Section 7.1.2,
but the part they play in the functioning of the cell is explained here.

The Communications Working Memory. The Communications Working Memory, like the
Nucleus Working Memory, is a WritablelnfoString (with a limited maximum length) which a cell
can use to compose arbitrary sequences of bits. A cell can then issue a cwm_send instruction to

%In this situation, the choice of which cells to kill is actually stochastic, with the level of a cell’s Energy Token
Store determining the probability of its being killed.

10The only restriction is that there is a maximum length to which these strings are allowed to grow, defined by
the global parameter info_string_size_limit. This is to prevent the situation in which a program evolves which
gets stuck in an infinite loop writing to the Nucleus Working Memory, eventually using up all of the memory in
the system.

"'The function of these latter two structures is explained in Section 4.7.

10

broadcast the contents of the Communications Working Memory into the environment (explained
in Section 6.5). The Communications Working Memory does not directly affect the functioning
of the cell in any other way.

The Received Message Store. Inter-organism messages take the form of BitStrings. When
they are being composed in the Communications Working Memory they are WritableInfoStrings,
when they are broadcast in the environment they are converted to EnvironmentallnfoStrings, and
when they are received by others cells into their Received Message Stores, they become plain
InfoStrings.

A cell can issue a rms receive instruction to receive messages which have been broadcast
from nearby grid positions. These messages (which are EnvironmentallnfoStrings), like all In-
foStrings, have a type (a number between 0 and 15) associated with them, and the value of a
cell’s dx register at the time that it issues a rms_receive specifies which type of messages are
to be received. In addition, the search in the environment for EnvironmentallnfoStrings of the
specified type only proceeds in a certain direction; starting from the grid position of the cell that
issued the instruction, the search emanates in one of eight directions, specified by the low three
bits of the cx register (see Figure 3(a)). The search proceeds one grid square at a time, covering
all grid squares in the specified eighth of the area around the cell until a certain number of
grid squares have been searched (defined by the global parameter rms_receive_search_area).
For example, Figure 3(b) shows a cell searching in direction 1. If rms_receive_search area
is set to 12, say, then the grid positions marked with black dots will be searched. The search
emanates from the cell along a series of wavefronts—the grid position on wavefront 1 is searched
first, followed by those on wavefront 2, then 3, then 4. At this point, 12 positions have been
visited, so the search stops. Any EnvironmentallnfoStrings of the specified type found in this
area are copied into the cell’s Received Message Store as InfoStrings. (A cell may extend the
reach of a search by re-issuing an identical rms_receive instruction from the same grid position
within a certain time limit after the first one. This time limit is specified by the global para-
meter max_time _for msg receive reinforcement. If a cell does this, the search will continue
outwards from the last grid position searched previously. In the example of Figure 3(b), the grid
positions marked with gray dots, on wavefronts 5 and 6, will be the next 12 positions searched
in this situation.)

The host cell may process these received messages, using the str_switch and adr instructions
to set the ax register to an address within a message, and using the instruction mov_ic to
sequentially read the message.

Messages in the Received Message Store are normally treated as passive structures which
may be inspected by the host code, but this is not always the case. As already mentioned, each
message in the store has an associated type. The host code of the cell—the genome—being
an InfoString, also has a type associated with it.!? If any message in the Received Message
Store happens to be of the same InfoString type as the cell’s genome, then it may potentially be
used as additional genetic material, and translated into executable instructions. In other words,
promoters and repressors may bind to it in just the same way as they can bind to the genome.
If the active promoter does indeed bind to a message in the Received Message Store, translation
begins along it just as it would on the genome. A cell has several lines of defence against such
parasitism, which are mentioned in Section 7.1.2.

12The type of the cell’s genome cannot be directly altered, and is passed on to children when the cell splits
or divides. However, it is subject to mutation like any other part of the cell (see Section 6.7). Therefore, it is
possible for organisms with different genome types to emerge in the system.

11

0 stotots
. A 1 je ol ?
/ 74 é —
6 = > 2 fo—9 | @ 0| o
/ / /'/ 5
’__? -1 4
SEIRE RS
i A 2
* Q-
@ (b)
A cell can search for messagesin one A cell searching for messagesin direction 1.
of 8 directions Seetext for details.

Figure 3: Searching for Communications with the rms_receive Instruction.

A situation where the execution of code from messages in the Received Message Store may be
particularly common is when the parameter neighbouring genomes_readable is set to yes. In
this case, whenever a new promoter becomes active in the cell (see Section 4.3), rather than trying
to first find a binding site on the cell’s genome, or even on eligible messages already resident
in the Received Message Store, the cell first imports copies of the genomes of any immediately
neighbouring cells, one by one, into its Received Message Store. Note that this importation occurs
automatically, without the host cell having to issue a rms_receive instruction, and without the
neighbouring cell having to make a copy of its genome and issue a cwm_send instruction. Each
imported message (the copy of the neighbouring cell’s genome) is checked for a binding site for
the new promoter. If a site is found, the message remains in the Received Message Store, and
the cell starts executing instructions from it, starting in the position immediately following the
binding site (see Section 4.3). If no binding site is found, the cell deletes the imported message
from its Received Message Store and imports the genome of the next neighbouring cell, if there
are any remaining. Only after all the neighbouring genomes have been checked in this way will
the cell consider searching for a binding site on existing messages in the Received Message Store,
and finally on the cell’s genome itself. This mechanism was incorporated into the system in an
effort to simulate the ability of programs in Tierra to read the code of neighbouring programs
[Ray 91].

4.8 Other Structures

There are a number of other structures associated with a cell, which are mentioned briefly here.

Registers There are four (16 bit) registers. The registers ax and bx are used primarily for stor-
ing and manipulating addresses, whereas the registers cx and dx are used for arithmetic.
The main use of the ax register is to store addresses returned by the adr instruction. This

12

instruction looks for a specified bit string along the genome (or other eligible InfoString),
and, if found, returns the address of the first bit of the matching area into the ax register.
The address is simply the (zero-based) position of the bit from the left of the genome.
The mov_ic instruction can be used in conjunction with adr to read an instruction from
the genome, at the address pointed to by the ax register, into the e¢x register. Details of
these instructions are given in Section B. (There is actually a slight complication involved
with the use of adr and mov_ic; these instructions do not only work with the genome,
but can also be used on InfoStrings in the Received Message Store, as already mentioned.
Each cell actually keeps a pointer called the ADRStringPointer, which normally points to
the genome. However, it can be changed to point to one of the InfoStrings in the Received
Message Store by the use of the str_switch (or similar) instruction. The adr and mov_ic
instructions always work on the InfoString currently pointed to by the ADRStringPointer.)

Flag There is one flag, used mainly to signal unusual or error conditions in the execution of
some instructions.

Stack Each cell has a single stack, with a limited maximum capacity (defined by the global para-
meter stack_size_limit). Instructions are included in the language for pushing numbers
onto the stack and for popping numbers from it.

Flaw Rate Each cell has a parameter which defines the frequency with which flaws occur in
the execution of instructions (see Section 6.7). This flaw rate is subject to mutations
(Section 6.7), so it may evolve over time.

Statistics and Housekeeping Information There are various other minor structures associ-
ated with a cell, mostly concerned with keeping statistics of the cell’s lineage and activity
(for future analysis) and with keeping track of various activities within the cell. These
structures are not explained in detail here, but some are mentioned in passing throughout
the rest of this chapter where appropriate.

4.9 Parallel Programs (Multicellular Organisms)

It has already been mentioned that the design of Cosmos was guided by an analogy to cellular
biological organisms (Section 2). In order to model not just unicellular organisms, but also
multicellular ones, Cosmos has been designed to support parallel programs—an analogy to
multicellularity. Furthermore, it allows programs to dynamically create new parallel processes
as they are running, as an analogy to the growth of a multicellular organism from a single celled
origin.

All programs in Cosmos are instances of the Organism!3 class. An Organism may contain
one or more Cells (each Cell being essentially an individual process). There is therefore no
fundamental difference in the representation of serial and parallel programs; a serial program is
just an Organism which has only one Cell, while a parallel program is an Organism with more
than one Cell.

13 A capital ‘O’ is used here to emphasise that we are talking about the specific implementation details. However,
as the Organism class encapsulates the functionality of an organism, the two terms can be used interchangeably.
Therefore, in the rest of the document I shall just use the term organism (with a small ‘0’). The same applies for
cells and the Cell class.

13

4.9.1 Topology of a Multicellular Organism

In a parallel program, each cell has a specific position in the environment (just like any other
cell). The only restrictions on the placement of cells within a parallel program (beyond those
defined for all cells by the global parameters) are that every cell within the organism must be
adjacent to (i.e. occupy one of the eight neighbouring grid positions) at least one other cell
owned by the organism, and that two cells within the same organism cannot share the same grid
position. The topology of an organism is important in terms of its intercellular communications,
as any given cell can only exchange regulators and energy tokens with immediately adjacent
cells within the organism. By means of this transfer between cells in a multicellular organism,
the behaviour of any cell is affected by the behaviour of its neighbours. See Section 7.1.1 for
more details.

As a parallel program develops, an individual cell can actually change its position relative to
its neighbours, using the migrate instruction. This gives a cell the opportunity of interacting
with different neighbouring cells throughout the life of the program.

4.9.2 Energy Transport

As mentioned above, a cell in a multicellular organism can pass energy tokens from its store to
its neighbouring cells, using the et_transport instruction. In this way, it is possible for a mul-
ticellular organism to develop specialised cells that collect energy tokens from the environment
and distribute them throughout the rest of the organism, leaving other cells free to specialise in
other tasks if necessary.

4.9.3 Fission

It has already been said that all of the cells comprising a multicellular organism are restricted to
being located in such a position that they are in contact with (i.e. in an adjacent grid position
to) at least one other cell in the organism. However, as individual cells within a multicellular
organism can die at different times (in the ways described in Section 4.5.1), it is possible to get a
situation where a collection of cells that was once connected as a multicellular organism breaks
into two or more unconnected groups of cells because of the death of one of more cells in the
middle of the structure (see Figure 4). If such a situation arises, the separate sub-groups of cells
each now become separate organisms in their own right. Cell division and organism fission are
therefore two distinct ways in which a new organism may be created.

4.9.4 The Cost of Multicellularity

The cost of being part of a multicellular organism is governed by the global parameter
multicellularity_penalty_factor. That is, for each cell in a multicellular organism, this
parameter represents the number of energy tokens that are deducted from that cell’s Energy
Token Store at each time slice for each additional cell with which it is in contact. For example,
if a cell is adjacent to two other cells belonging to the same organism (i.e. there are two cells
with which it can exchange regulators and energy tokens), then at each time slice, twice the
amount of energy tokens as specified by multicellularity penalty factor are deducted from
that cell’s store. This parameter therefore defines how expensive it is for a cell to maintain a
connection with one other cell in a multicellular organism.

14

S \

A single multicellular Onecell diesinthe The organism fissions
organism middle of the organism into two smaller organisms

Figure 4: An Example of Organism Fission.

4.9.5 Organism Death

An Organism is composed of one or more cells. In Cosmos there is no specific idea of an organism,
as a whole, dying—rather, an organism dies when the last of its constituent cells dies.

5 The Programming Language and Representation

REPLiCa,' the programming language in which the self-replicating programs are written, is
based upon the Tierran language [Ray 91], with some changes and additions to support the
extra functionality of Cosmos. Like Tierran, REPLiCa has been designed to be robust, in the
sense that there is little syntactical structure to a program, so that any random collection of
REPLiCa instructions will form a valid program that will do something (maybe not anything
sensible, but it will not cause the system to crash). The REPLiCa instruction set is listed, with
annotations, in Section B.

One big difference between Tierran and REPLiCa is in the mechanism for control flow
branching and jumping. Tierran uses a system of template-driven jumping (see [Ray 91] for
details). REPLiCa does not have jumps of this kind; rather, jumps may be accomplished in two
different ways. The first, primarily for single jumps rather than loops, is just by the creation of
an appropriate promoter to bind to the desired jump destination, either followed by the deletion
from the Promoter Store of the currently active promoter (using the reg_destroy instruction), or
by the issuing of a stop instruction—both of which have the effect of stopping the execution of
the current section of code and activating the new promoter.'> The second way by which (local)
jumps may be performed is by the use of the set_jmp and jmp instructions. Each cell contains a
pointer called the LocalJumpPointer which, if set, points to a position on the genome (or currently
active InfoString in the Received Message Store). When a set_jmp instruction is executed, this
pointer is set to the address of the next instruction. When a jmp instruction is executed, control
passes to the instruction pointed to by the LocalJumpPointer (if it is set, otherwise no jump is
performed). The LocalJumpPointer can be cleared with the clr_jmp instruction.

REPLiCa’ is an acronym for Robust Evolvable Programming Language for Cosmos.

150f course, when programs are evolving, especially when we are considering parallel programs, there may
be more than one promoter in the Promoter Store at one time. However, here we are describing how a human
might design a program that performs a jump—evolution would probably go about designing a program in a very
different way.

15

The translation of the bit-string representation of a program on the genome, and the control
of execution of the program by promoters and repressors, illustrated in Figure 2, has already
been explained in Sections 4.2-4.4.

6 The Environment

6.1 The Grid

As mentioned in Section 3.2, cells in Cosmos live in a discrete two-dimensional spatial environ-
ment (the ‘grid’). At the start of each time slice, a number of energy tokens are deposited to
each position on the grid (see Section 6.2). Cells can collect these energy tokens by using the
et_collect instruction (see Section 6.3). If energy tokens are scarce at a cell’s current location
(or indeed for any other reason), the cell (to be precise, the whole organism) may move around
the grid (see Section 6.4). For multicellular organisms, each cell must occupy a different grid
position, i.e. all organisms are ‘flat’ (cells cannot pile on top of each other in the same grid
position). However, cells from different organisms can occupy the same grid position. What this
means is that all organisms are flat, but they can ‘slide over’ each other, and in this sense the
environment is two-and-a-half dimensional.

6.2 Distribution of Energy Tokens

At the start of each time slice sweep across all of the cells in the population (in the routine
DistributeEnergyTokens, described in Section 8), the Cosmos operating system releases a
certain number of energy tokens into the environment. These tokens are then available to be
collected by cells, by the use of the et_collect instruction. At the end of each time slice
sweep (in the routine AttenuateEnvironmentalEnergy, also described in Section 8), the op-
erating system takes a number of energy tokens away from each grid position. In the current
implementation, different grid positions may receive different numbers of energy tokens at the
beginning of each time slice sweep (determined by the various distribution schemes described
below), but all positions have the same number of energy tokens removed at the end of each time
slice sweep (specified by the parameter number_of energy_tokens_per_grid pos_per_sweep, if
they have that number available). If the number of energy tokens received by a grid position
in a time slice sweep exceeds the number removed from it, and they are not collected by cells
during that sweep, the excess tokens remain there for future collection. A grid position may
therefore sometimes accumulate a relatively large number of energy tokens (up to a maximum
limit defined by the global parameter max_energy_tokens_per_grid pos) if there is not much
demand for them by cells in the locality.

The distribution of energy tokens across the grid may follow a number of different patterns,
defined by the global parameter energy distribution_scheme. At present, four such patterns
are defined: land, sea, mixed and random. Note that the total number of energy tokens dis-
tributed to the environment at each time slice sweep is always specified by the product of the
parameter number_of energy._tokens_per_grid_pos_per_sweep with the number of squares in
the grid. The different distribution schemes determine how many of these tokens are distributed
to individual squares. The different schemes work as follows:

Land Each grid position receives a constant number of energy tokens from one time slice to the
next. In the current implementation, there is one extra parameter, x_delta, associated
with this sort of energy distribution, which defines the gradient of the distribution from

16

the left-hand side of the grid to the right-hand side. See Figures 5(a) and 5(b) for examples
of this type of distribution.

Sea In contrast to land distribution, for sea distribution each grid position receives a varying
number of energy tokens from one time slice to the next. During each time slice, energy
tokens are distributed to grid positions which are located under a ‘wave’—a vertical band
which moves one position to the right after each time slice: see Figure 5(c). Grid positions
which are not located under a wave in the current time slice receive no energy tokens for
that time slice. In the present implementation there are two parameters associated with
this method; wave width and number _of waves. The former specifies the width, in grid
positions, of a single wave, and the latter specifies how many waves are to be fitted in to
the grid from left to right (the waves are evenly spaced across the grid).

Mixed This is a mixture of land and sea distributions, with the top portion of the grid
receiving energy according to the land distribution, and the bottom portion according to
the sea distribution. The relative sizes of these top and bottom portions of the grid are
determined by the global parameter 1and fraction. An example is shown in Figure 5(d).

Random Energy tokens are distributed in packets with size determined by the global parameter
energy_distribution random_chunk_size to randomly chosen grid positions, until the
correct total number of energy tokens have been distributed. An example is shown in
Figure 5(e).

A multicellular organism may also pass energy tokens between its cells (using the et_transfer
instruction), leading to the possibility of some of the cells specialising in energy token collection
and distribution of these tokens to the other cells in the organism.

With such a system of CPU-time allocation, programs may potentially evolve which operate
on a wide variety of time-scales. For example, very short programs may exist which quickly grab
just enough energy tokens to make a copy of themselves, while much more complicated programs
may coexist which gather large numbers of tokens over long periods of time, and reproduce at
a much slower rate.

When a cell dies, any unused energy tokens are passed back to the local environment (where
they may be collected by other organisms). This mechanism provides potential selection pressure
for the evolution of organisms that kill other organisms in order to collect the energy tokens
thus released into the environment. This could happen if, for example, an organism transmitted
EnvironmentallnfoStrings containing the kill instruction, which another organism subsequently
received and executed (see Sections 4.7 and 7.1 for further details of how this would work).

6.3 Collection of Energy Tokens

In the present implementation a choice of two energy collection schemes, shared and private,
is provided. The global parameter energy_collection_scheme determines which scheme will
be used.

Shared Energy. Under this scheme, when a cell issues an et_collect instruction to collect
energy tokens from the environment, it first tries to collect spare tokens from its current grid
position. However, if the grid position does not contain sufficient energy tokens, the cell then
looks for other cells at the same grid position or in one of the eight neighbouring grid positions.
If other cells exist in one of these nine locations, energy tokens will be extracted from the

17

@

(b) (©
‘Land’ Distribution, ‘Land’ Distribution, ‘Sea’ Distribution,
x_delta=0.0 x_delta> 0.0 wave width =5, number_of_waves=1

Key:
BT [[

High —— Low None

Number of Energy Tokens
Deposited per Time Slice

(d) ®
‘Mixed’ Distribution, ‘Random’ Distribution
land_fraction = 0.5

Figure 5: Different Patterns of Energy Token Distribution.

18

Energy Token Store of one (or more) of these (at random) until the cell has obtained the normal
quota of energy tokens for one execution of et_collect (as defined by the global parameter
number_of _energy_tokens_per_collect).

Private Energy. With this scheme, if the local grid position does not contain enough energy
tokens for an et_collect, the cell just takes what is there, but does not attempt to gain
additional energy tokens from neighbouring cells.

6.4 Moving around the Grid

A cell does not have to remain in its original grid position, but can move around by using the
move instruction. The contents of the cx register at the time the instruction is issued determines
in which direction the cell will try to move (the low 3 bits specify a direction from 0 to 7, as
indicated in Figure 3(a)).

However, movement is complicated by the fact that a cell may be part of a multicellular
organism (in which other cells are also trying to move, possibly in different directions). The
organism must move as a whole, so what actually happens is that the issuing of a move instruction
by a cell is actually a vote to move in a particular direction rather than an instruction that has
immediate effect. At each time slice, an organism counts up all of the movement votes from its
constituent cells, and decides how to move as follows:

A normalised total movement vector A is calculated by summing all the individual votes of
cells within the organism:

1 n
Az—Zai (1)
gt

where n is the total number of cells in the organism, and a; is the unit vector of movement (in
one of eight possible directions) specified by cell 7 (or 0 if the cell did not issue a move instruction
during the current time slice).

A ‘multiple movement factor’, M, is then calculated. This factor determines the extent to
which two or more cells moving in tandem within an organism are more efficient than would be
expected by simply summing their individual movements. M is defined as:

M=(m—-1)L+1 (2)

where m is the number of cells within the organism that individually issued a move instruction;
and L is the ‘constant of leverage’ when two or more cells move at the same time (L > 0). L is
defined by the global parameter movement_leverage factor.

Movement is further complicated in the situation where the organism is overlapping (or
partially overlapping) another organism on the grid. In this case, there is a ‘friction’ term F
which slows the organism down as it attempts to move over other cells. This term is defined as
follows:

F=2 (3)

where o is the number of cells in the organism which share a grid position with cell(s) from
other organisms. The friction factor can actually be turned on or off with the global parameter
apply friction factor. If it is turned off, F' is effectively set to zero.

The total movement that the organism attempts to make, X, is therefore specified by

X =M(1—-F)A (4)

19

The organism moves from its current position by the distance and direction given by X,
unless it reaches the edge of the grid, in which case it stops at that point (if the grid boundary
does not wrap).

6.5 Inter-Organism Communications

If a cell broadcasts an inter-organism communication using the cwm_send instruction (as men-
tioned in Section 4.7), the contents of its Communications Working Memory is packaged into
an EnvironmentallnfoString structure (with an initial intensity specified by the global parameter
envinfostring initial intensity, and a type specified by the low four bits of the dx re-
gister). This EnvironmentallnfoString is deposited in the environment in the same grid position
as the cell, where it can be detected by other cells (by using the rms_receive instruction,
described in Sections 4.7 and 7.1.2).

Each grid position in the environment can hold one EnvironmentallnfoString of each of the 16
possible types. If a string of the same type already exists in the grid position when a cwm_send
message is issued, the existing string is deleted and replaced by the new one.

At each time slice sweep (in the AttenuateMessageIntensities routine, described in Sec-
tion 8), the intensity of each EnvironmentallnfoString is attenuated according to the following
equation:

Ing1 = k(1)" (5)
where I, is the intensity at time n, and k and p are constants defined by the global para-
meters envinfostring decay_constant and envinfostring decay_power respectively. When
the intensity of any string falls below a certain threshold (defined by the global parameter
envinfostring lower_threshold), the string is deleted.

There is one additional feature associated with these EnvironmentallnfoStrings, whereby a
cell can reinforce the intensity of a message that it has already sent. If the cell re-issues
the cwm_send instruction within a given number of time slices (determined by the parameter
max_time_for msg_send reinforcement), while still in the same grid position, and it has not
written anything else into its Communications Working Memory in the meantime, then the in-
tensity of the existing EnvironmentallnfoString is incremented by a small amount.'6

6.6 Environmental Information

As well as carrying specific inter-organism communications (mentioned in Section 4.7 and ex-
plained in more detail in Sections 6.5 and 7.1.2), the environment also carries summary inform-
ation about itself. These messages are transmitted (in the form of EnvironmentallnfoStrings) by
the environment itself, one at each grid position, and may be intercepted by cells in exactly the
same way as they intercept other inter-organism communications. The messages contain the
following information (represented in a binary encoding):

e The number of cells at that grid position
e The total number of free energy tokens at that grid position

All of these messages behave just like any other EnvironmentallnfoStrings in the environment;
the only distinguishing feature is that they are all given an InfoString type of 15. (There are no
restrictions about organisms using the same type number for their own communications.) They
may be picked up by any cell using the rms_receive instruction.

16To be precise, the magnitude of the increment is kI”, where I is the current intensity, and k and p are constants
defined by the global parameters envinfostring_decay_constant and envinfostring_decay_power respectively.

20

6.7 Mutations and Flaws

Little has so far been said about the role of mutation in Cosmos. Mutation is a vital process
from the evolutionary point of view, as it provides a continual source of genetic novelty for
selection to work upon. Mutations occur naturally throughout the system at a low rate, and
may affect most of the structures within the cell (i.e. the Genome, the Received Message Store,
the Nucleus Working Memory, the Communications Working Memory, the Promoter Store, the
Repressor Store, the flaw rate, the stack, the registers and the flag). For structures which are
based upon BitStrings, mutations are governed by the global parameter mutation_period, which
specifies the probability of an individual bit within the structure being flipped. For structures
based upon integer numbers (the flaw rate, stack and registers), mutations occur at the same
rate as for BitStrings, but the details are slightly different. For the flaw rate, a mutation causes
a random increment or decrement in the current value within predefined limits.!” For the stack,
a mutation will, with equal likelihood, either cause a random number to be pushed onto the
stack, or the top number to be popped off it. For registers, a mutation will cause the register’s
current value to be replaced by a random value. Mutations also affect the cell’s flag at the same
rate, causing the flag’s state to be inverted.

In addition, variety may also be introduced into an organism by the flawed execution of
instructions in its genome.'® When a flaw occurs (which happens at a rate defined by an
individual cell’s flaw rate, as described in Section 4.8), the instruction which is about to be
executed, rather than just being executed once, will either be executed twice (successively) or
not at all. (The choice is random, with both events occurring with equal likelihood.) The effect
of a flaw is therefore that instructions may occasionally produce abnormal results, such as an
inc_a instruction adding 2 to the value of the ax register instead of 1.

Despite this distinction between mutations and flaws, the net results are the same. If the
error affects what gets written to the Nucleus Working Memory of a cell just before it issues a
nwm_divide instruction, then it will be passed on to the child organism and become a permanent
addition to the gene pool. On the other hand, if the error does not affect the contents of the
Nucleus Working Memory (even indirectly), and it does not affect the regulators that get passed
on to any offspring, then it will only affect the current organism and will not be inherited by
child organisms. From an evolutionary point of view, only the former scenario is important.

7 Actions and Interactions

The methods available to cells and organisms for interacting with the ‘physical’ environment
and with other cells and organisms have already been discussed: issues such as the collection of
energy tokens from the environment, and moving around the grid, were explained in Section 6;
intercellular communications (i.e. the transfer of energy tokens and regulators) have been men-
tioned in Sections 4.9 and 6.2; and inter-organism communications have been mentioned (from
the point of view of the mechanisms involved) in Sections 4.7 and 6.5. In the present section,
more will be said about some higher-level effects and implications of both types of communica-
tion.

1To be precise, the flaw rate can change by plus or minus n parts per thousand, where n is determined by the
parameter flaw_period_max_change_per_thou.

18 Tjerra features both mutations and flaws (although the mechanisms for flaws is somewhat different) but in
subsequent work by Chris Adami and Titus Brown with their Avida system the authors suggested that flaws
played only a minor role in evolution compared to mutations [Adami & Brown 94]. Informal observations from
preliminary runs of Cosmos suggested that flaws in the execution of instructions significantly increase the rate at
which useful mutants are produced.

21

7.1 Implications of Intercellular and Inter-Organism Communications

The general philosophy governing the design of the communication facilities in Cosmos was to
provide the organisms with as rich an environment as possible. In particular, the inter-organism
communications instructions allow organisms to exchange arbitrary messages. The idea is that,
as in nature, many possibilities for communication are provided by the ‘physics’ of the system.
The question of whether these possibilities are realised or not is left to the evolutionary process.

7.1.1 Intercellular Communications

As mentioned in Section 4.9, a cell which is a member of a multicellular organism can com-
municate with other cells in the organism by sending regulators from its Promoter Store and
Repressor Store (using the reg_transport instruction). In this way, the execution of code in a
particular cell may be influenced by many other cells in the organism, because regulators which
are sent from one cell to another will influence which sections of code get executed in both cells.
Therefore, although each cell in a multicellular organism has the same genome (assuming there
are no somatic mutations), each cell may be executing different parts of this genome at any
given time.

As a cell within a multicellular organism can only exchange regulators and energy tokens
with its immediate neighbours, organisms adopting different shapes will have different capacities
for internal communication and regulation. Within an organism, cells can also actively switch
neighbourhoods by migrating to a different position (using the migrate instruction). If multi-
cellular organisms do evolve in any runs of Cosmos it will be of interest to see what sorts of
shapes they adopt, and how much variety in shape exists across the population.

7.1.2 Inter-Organism Communications

The mechanisms for inter-organism communications were introduced in Sections 4.7 and 6.5. A
cell can broadcast an arbitrary message using the cwm_send instruction, and receive other mes-
sages from the environment—sent from cells in other organisms, cells within the same organism,
or from the environment itself (Section 6.6)—using the rms_receive instruction. Allowing or-
ganisms to exchange arbitrary bit strings has little direct biological analogy. Rather, it is an
attempt to equip the organisms with some communication channels in much the way that bio-
logical organisms can communicate using channels such as light, sound etc.

Once messages (InfoStrings) have arrived in a cell’s Received Message Store, they may be read
by the host code (using str_switch, adr, mov_ic and related instructions), and messages of the
same type as the genome of the host cell may even be treated as executable code, as described in
Section 4.7. This allows for genetic information to be exchanged between organisms in a manner
analogous to the direct exchange mechanisms employed by lower biological organisms such as
viruses and bacteria.

If the foreign code is detrimental to the performance of the host cell, the host may be expected
to evolve measures to prevent the foreign code from being executed. This can be achieved in a
number of different ways, such as by using a different type number for its own genome (which
may come about by mutation), by removing the foreign code from the Received Message Store
(using the str_remove instruction), or by not receiving the foreign code in the first place. If,
however, the foreign code is beneficial to the host, then it may be expected that the host will
evolve to copy this code into its Nucleus Working Memory so that it will become incorporated
into the host genome in future generations. The system is even flexible enough to allow for the
possibility of the evolution of sexual reproduction.

22

Inoculate
currentTimeSliceSweep = 1
while (stopping criteria not met)
{
DistributeEnergyTokens
AttenuateMessageIntensities
ExecuteCellTimeSlices
PerformOrganisml.evelOperations
if ((currentTimeSliceSweep MOD mutation application period) = 0)
ApplyMutations
if ((currentTimeSliceSweep MOD overcrowding check period) = 0)
CheckOvercrowding
if ((currentTimeSliceSweep MOD env_info_broadcast_period) = 0)
BroadcastEnvironmentalInfo
ExportData
AttenuateEnvironmentalEnergy
currentTimeSliceSweep = currentTimeSliceSweep + 1

Figure 6: The Top-Level Algorithm.

8 The Top-Level Algorithm

A pseudo-code listing of the top-level algorithm is shown in Figure 6. Most of it should be
self-explanatory. The Inoculate routine constructs a number of self-replicating programs and
places them at specified positions on the grid (governed by the parameters ancestor, number
and placement). The stopping criteria for the main loop may be to run for a given number of
time slices (if the parameter 1imited_run is set to yes) or to run indefinitely (only stopping if
and when all programs on the grid have died out). DistributeEnergyTokens places a number of
energy tokens in each grid position, as described in Section 6.2. AttenuateMessageIntensities
refers to the intensities of any EnvironmentallnfoStrings that currently exist in the environment.
PerformOrganismLevelOperations checks, for each organism, whether a fission has occurred
by the death of one of more cells within it (see under “Fission” in Section 4.9), subtracts energy
tokens for each cell in a multicellular organism depending on how many neighbours the cell has
(see under “The Cost of Multicellularity” in Section 4.9), and finally calculates and performs
any movement of the organism from the contributions made by individual cells (Section 6.4).
CheckOvercrowding checks whether the current population of cells on the grid exceeds the limit
specified by the global parameter max_cells per process. If so, a fraction of the population
(specified by the parameter population_cutback on_overcrowding) is killed off. The choice of
which cells to kill in this situation is stochastic, but is based upon how much energy each cell
has stored in its Energy Token Store. BroadcastEnvironmentalInfo generates an environmental
message of each grid position, as described in Section 6.6. AttenuateEnvironmentalEnergy
removes a number of energy tokens from each grid position, as described in Section 6.2.

9 Global Parameters

The Cosmos system as described contains a considerable number of global parameters. These
are listed and described in Section A. The number of parameters is much larger than in most

23

other artificial life platforms, but this is largely because other platforms often have many features
which are hard-coded in a fairly arbitrary way. In contrast, Cosmos was designed to allow the
user a great degree of control over the system’s configuration.

10 Input and Output Files

The configuration of an individual run is specified in a number of files which Cosmos reads
when the run commences. These files contain details of non-default parameter settings, of the
mapping between instructions in the REPLiCa programming language and the binary encoding
used to represent them in a cell’s genome, and of user-defined ancestor programs. Full details
of these input files are given in Section E.1.

The core Cosmos system is a stand-alone application. In order to allow the analysis of an
evolutionary run, a number of log files containing information about the different organisms
are written by the system during the run. The files may then be used to produce graphs and
statistics about the run. These output files are described in Section E.2.

11 Major Differences between Cosmos and Tierra

In this section the main areas in which Cosmos differs from Tierra are highlighted. A fuller
explanation of why some of these differences were incorporated into the system can be found in
[Taylor & Hallam 97]. In the following, the extension of standard Tierra to deal with parallel
processes, as described in [Thearling & Ray 94] and [Thearling 94|, is referred to as ‘Parallel
Tierra’.

Cellular Structure. An individual program (or more precisely, an individual process, which
may be serial or parallel) in Cosmos has many more structures associated with it than do
programs in Tierra. Tierran programs just have the list of instructions, a program pointer,
registers and a stack. In contrast, Cosmos programs also have all of the structures explained
in Section 4. The idea was that they should incorporate some of the features (e.g. regulators,
translation machinery, and areas where new strings may be constructed) observed in cellular
biological organisms. The programs must rely largely on communications to interact with the
outside world, and cannot directly read the code of their neighbours.

Regulator System. The regulator systems of Cosmos (promoters and repressors: see Sec-
tion 4.3) have no equivalent in Tierra. They were designed specifically to allow cells in a
multicellular organism to be able to influence which sections of code were being executed in
neighbouring cells, thereby promoting cell differentiation and specialisation. The design of the
regulator systems was inspired by the processes of chemical signalling between cells, and the use
of promoter sequences and repressors within cells, in biological organisms.

CPU-time Allocation and Energy Tokens. In Cosmos, each cell has to pay one energy
token for every instruction it executes. Cells must collect these tokens from the environment, and
store them in their Energy Token Store. A cell dies when the number of tokens in its Energy Token
Store falls below a threshold (defined by the parameter ets_lower_threshold). Furthermore,
if the population size exceeds a threshold (defined by the parameter max_cells_per_process),
cells are killed off stochastically, but those with fewer energy tokens in their Energy Token Store

24

have a greater chance of being killed. A cell can therefore exert considerable influence over its
own longevity, via its success at collecting energy tokens from the environment.

In contrast, programs in Tierra have little control over their longevity. As individual Tierran
programs have no notion of energy levels, a separate ‘reaper queue’ mechanism is employed
to govern cell death. Programs can move up the queue if they cause error conditions during
execution, but in general the probability of death increases with age [Ray 91]. The reaper queue
therefore effectively imposes an upper limit on the lifespan of programs, whereas there is no
theoretical upper limit in Cosmos.

Additionally, the energy token scheme in Cosmos introduces the idea of a competition
for the available energy—an idea which is missing in Tierra. Furthermore, if the parameter
energy_collection_scheme is set to shared, cells may extract energy tokens from their neigh-
bours. In this situation, a cell is a potential energy resource for other cells, and, if environmental
energy were scarce, it would become advantageous for a cell to kill its neighbours by draining
their energy. If cells could defend themselves against such attacks, some sort of coevolutionary
process might arise from such interactions.

Read, Write and Execute Privileges. Tierran programs only have write access within their
own ‘cell membrane’ (apart from when they are in the process of creating a daughter cell, when
they also have write access to a specific additional chunk of memory, which has been allocated by
the Tierra operating system). A similar situation exists in Cosmos. However, Tierran programs
have read and execute privileges for all areas of instruction memory, so that they can directly
examine the code of other programs, and even execute this code. Cosmos cells, on the other
hand, only have direct read and execute privileges within their own cell membrane, and must
rely on the system’s communication facilities to interact with other cells (see Section 7.1). This
restriction in Cosmos is related to the guiding analogy of the biological cell, which cannot directly
read the genetic code of a neighbouring cell.

Exchange of Messages and Genetic Information. The Cosmos mechanisms for the direct
exchange of arbitrary messages (which may, for example, be copies of genetic information) have
no parallel in Tierra. This difference is linked to the differences in read, write and execute
privileges described in the previous point.

Division Process. This point is related to the previous two. As a Cosmos cell only has write
access within its own cell membrane even when it is composing a copy of itself, this copy must
first be composed within the parent cell (in the Nucleus Working Memory). The copy is then
issued en masse to a new memory location.

In Tierra, a cell is first allocated a new block of memory, then writes a copy of itself into
this memory, and finally ‘divides’, signalling that the block of memory is now a new organism
in its own right.

There is not a great deal of difference between the two mechanisms, but an advantage of
the Cosmos method is that it allows an organism to reproduce (i.e. to create a child organism)
and to grow (i.e. create a new cell which remains a member of the multicellular organism) using
exactly the same technique.

In contrast, Parallel Tierra includes a split instruction which adds an additional CPU
to the processor structure of the program. This mechanism is natural for a parallel machine
architecture with a shared program space, as used with Parallel Tierra. In Cosmos memory is
not shared across cells, so that a multicellular program must actually copy itself from one cell
to another in order to run in parallel. With this type of architecture, it seems preferable that

25

the bulk of such copying work should be performed by the cells themselves rather than by the
Cosmos operating system.'?

Additionally, having very similar mechanisms for growth and reproduction of organisms is
arguably more analogous to the way that multicellular biological organisms may have evolved.

Local Competition. One of the problems that has been observed with the process of evolution
in Tierra is that it suffers from premature convergence due to global interactions between cells
[Adami & Brown 94].

Chris Adami and Titus Brown sought to overcome this problem in their Avida system by
giving each of the cells a location on a two dimensional toroidal grid. Cells can only interact
with other cells occupying nearby grid positions, thereby slowing down the rate of propagation
of evolutionary changes throughout the total population and promoting heterogeneity.

Cosmos addresses this problem by placing organisms on a grid (as in Avida), and by restrict-
ing cells to only be able to communicate and interact with other cells within a certain distance
on the grid.?°

Binary Representation. In Tierra, programs are directly represented as lists of instructions.
In Cosmos, the program code is represented as a binary string (specifically, an InfoString), and a
translation process is required to produce the executable code. One consequence of this design
is the possibility of the evolution of ultra-compact programs which use the same section of bit
string to encode multiple sequences of instructions in different reading frames (as is observed in
some biological organisms; [Matthews 91] p.144). Another consequence is that it would be easy
to modify the system in order to study the evolution of the genetic code itself (i.e. the mapping
from bit strings to program instructions).

Size of Instruction Set. The REPLiCa instruction set is about twice as big as that of
the Tierran language. Many of the instructions can certainly be removed without having a
great impact on the things that programs can do (e.g. the self-replicator listed in Section C.1
only uses 17 different instructions). If the genetic code were allowed to evolve, then unused
instructions might be expected to be removed from the code by natural selection, allowing
common instructions to be represented multiple times.

Memory Model. Cosmos uses a distributed memory model of parallelism, in contrast to the
shared memory model of Parallel Tierra. In other words, each cell in a multicellular organism in
Cosmos has its own copy of the program code, of the other cellular structures, and of the CPU
state information (registers, instruction pointer, etc.). This distributed memory model, together
with the Cosmos regulator system, should promote the emergence of differentiation in parallel
programs. However, little work has so far been conducted with parallel programs in Cosmos, so
it is not yet known how effective this approach really is.

Memory Addressing Scheme. For reading from and writing to structures within cells,
Cosmos uses a local addressing scheme for each structure (i.e. the first bit of the Genome, of
the Communications Working Memory, and of the messages in the Received Message Store, are
all treated as address zero within that particular structure). Cells have no knowledge of their
memory location (or that of other cells) in the global addressing scheme of the system. This is in

"“But see the further discussion on this topic in Section 7.2 (pp.208-212) of [Taylor 99].
20But see the further discussion on this topic in Section 7.2 (pp.215-219) of [Taylor 99].

26

contrast to Tierra, which uses a global addressing scheme. The only ways that cells can interact
with each other are therefore by communication; by physical contact, such as by extracting en-
ergy tokens from each other (which is possible when the parameter energy_collection_scheme
is set to shared—see Section 6.3) and slowing down passing organisms (see Section 6.4); and,
for cells within a multicellular organism, by the exchange of regulators and energy tokens.

27

Appendices

A Global Parameters

An annotated list of all of the parameters available in Cosmos is presented in this section. These
are grouped into a number of different categories according to their function. The user may
specify non-default values for these parameters in the Cosmos input file params.ini, described
in Section E.

A.1 Inoculation

ancestor (type: enumerated, range: {al,a2,user defined})
Specifies the ancestor(s) programs to be used for inoculation. There are two predefined
ancestors (al and a2, listed in Section C). If user_defined is specified, the ancestor(s)
are read from the file ancestor.ini. The format of this file is described in Section E.

number (fype: non-negative integer, range: 1-10000)
The number of individual programs to inoculate the system with at the start of the run. If
more than one type of ancestor is specified in the ancestor.ini file, these are introduced
alternately until a total of number individuals is reached. If the parameter placement is
set to even, then the actual number of inoculated individuals may be slightly smaller than
that specified by number (see description of placement for details).

placement (fype: enumerated, range: {even,random})
Determines the placement of the inoculated ancestors. For even placement, the ancestors
are placed evenly on the grid in a square pattern, where the sides of the square are as
close as possible to the square root of the number specified by the parameter number. If
number is not a square number, the actual number of individuals will therefore be slightly
less than specified. For random placement, individuals are placed completely randomly,
and no check is made to see whether the chosen position is already occupied.

A.2 Start of Run

rng_seed (fype: integer, range: any)
Used to seed the pseudo-random number generator at the start of the run. If rng_seed is
negative, then an arbitrary seed is chosen (based upon the current clock time).

comment (type: character string, range: any)
An optional description of the run, which will appear in the run.log output file.

restart (type: boolean, range: {yes,no})
A value of yes will cause an interrupted run recorded in the file specified by the parameter
restart_file to be restarted.

restart _file (type: character string, range: any)
The name of the file to be used to restart an interrupted run (see restart).

run neutral model (type: boolean, range: {yes,no})
If set to yes, a neutral model is run based upon data recorded in the input file neutral.dat.
This file is generated during a previous run in which record neutral model data is set
to yes. For an explanation of neutral models, see Section 5.1.4 (p.111) of [Taylor 99].

28

A.3 Termination

limited run (type: boolean, range: {yes,no})
If yes, run will stop after the number of time slices specified by the parameter
number_of timeslices. Otherwise, the run will continue indefinitely.

number _of _timeslices (fype: non-negative integer, range: any)
See limited _run.

A.4 Environment

grid_size (type: positive integer, range: any)
Specifies the number of squares along each direction of the grid.

horizontal wrap (type: boolean, range: {yes,no})
Specifies whether the grid wraps around in the horizontal direction.

vertical wrap (type: boolean, range: {yes,no})
Specifies whether the grid wraps around in the vertical direction.

max_cells_per_process (fype: non-negative integer, range: any)
Specifies an absolute population ceiling for the number of cells in the environment.

population_cutback on_overcrowding (type: real number, range: any)
If the number of cells in the environment exceeds max_cells_per_process, then a propor-
tion of the population, specified by population_cutback_on_overcrowding, is killed off.
Cells to be killed are chosen stochastically, but based upon the number of energy tokens
they have stored.

overcrowding check period (type: positive integer, range: any)
Specifies the period (expressed as a number of time slice sweeps) between successive checks
for population overcrowding.

number_of_energy_tokens_per_grid_pos_per_sweep
(type: non-negative integer, range: any)
The average number of energy tokens distributed to each grid position at the beginning
of each time slice sweep. The number of tokens distributed to individual squares may
vary, as determined by the parameter energy distribution scheme. This parameter
also determines the number of energy tokens taken away from each grid position at the
end of each time slice sweep. See Section 8.

max_energy_tokens per_grid_pos (type: non-negative integer, range: any)
The maximum number of free energy tokens that any square in the environment can store.
If additional tokens are deposited on a square which already contains the maximum number
allowed, the extra tokens are lost.

env_info_broadcast_period (type: non-negative integer, range: any)
Specifies the period (expressed as a number of time slice sweeps) between broadcasts of
environmental information. See Section 6.6.

envinfostring decay_constant (type: real number, range: any)
Governs the decay rate of messages in the environment. See Section 6.5.

29

envinfostring decay_power (type: real number, range: any)
Governs the decay rate of messages in the environment. See Section 6.5.

envinfostring lower_threshold (fype: real number, range: any)
Specifies a threshold intensity for messages in the environment, below which they are
deleted. See Section 6.5.

envinfostring initial intensity (fype: real number, range: any)
Specifies the intensity assigned to newly created environmental messages. See Section 6.5.

max_time for msg send reinforcement (fype: non-negative integer, range: any)
Specifies the maximum time interval (in number of time slices) in which a cell can reinforce
the intensity of a message it has previously sent using the cwm send instruction. See
Section 6.5.

max_time for msg receive reinforcement (type: non-negative integer, range: any)
Specifies the maximum time interval (in number of time slices) in which a cell can extend
the search area of a previously issued rms_receive instruction. See Section 4.7.

rms_receive_search area (fype: non-negative integer, range: any)
Specifies the number of squares searched for environmental messages upon each execution
of the rms_receive instruction. See Section 4.7.

energy_collection_scheme (type: enumerated, range: {private,shared})
Specifies the rules governing the collection of energy tokens by a cell from the environment
and from neighbouring cells. See Section 6.3.

energy.distribution _scheme (fype: enumerated, range: {land,sea,mixed,random}) Specifies
how energy tokens are distributed across the environment by the Cosmos operating system
at the beginning of each time slice sweep. See Section 6.2.

energy distribution random chunk size (fype: non-negative integer, range: any)
Specifies how many energy tokens are distributed to each randomly chosen square when
energy_distribution_scheme is set to random. See Section 6.2.

x_delta (type: real number, range: any)
Specifies the energy gradient when energy distribution_scheme is set to land (or mixed).
See Section 6.2.

wave_width (fype: positive integer, range: any)
Specifies the width of energy wave columns (expressed in number of squares) when
energy distribution_scheme is set to sea (or mixed). See Section 6.2.

number _of waves (fype: positive integer, range: any)
Specifies the number of energy waves, each of width wave_width, are fitted across the grid
when energy distribution_scheme is set to sea (or mixed). See Section 6.2.

land fraction (fype: real number, range: 0.0-1.0)
Determines the proportion of the environment to be treated as land when the parameter
energy_distribution_scheme is set to mixed. An integer number of rows to be treated
as land is calculated by rounding down the product of land fraction and grid_size.
These land rows are always at the top of the grid, and the sea rows at the bottom.

30

A.5 Organism

max_cells_per_organism (fype: non-negative integer, range: any)
Specifies the maximum number of cells in a multicellular organism.

movement leverage factor (type: non-negative real number, range: any)
Partially specifies how a multicellular organism moves as a result of its constituent cells
trying to move. See Section 6.4.

apply_friction factor (fype: boolean, range: {yes,no})
Determines how organisms move when two or more cells occupy the same square in the
environment. See Section 6.4.

multicellularity penalty factor (fype: real number, range: any)
Specifies a cost for multicellularity, in the form of a number of energy tokens removed from
each cell in a multicellular organism at each time slice, depending on how many other cells
it neighbours within the organism. See Section 4.9.4.

A.6 Cell

ets_lower_threshold (fype: non-negative integer, range: any)
Specifies a threshold number of energy tokens in a cell’s Energy Token Store, below which
the cell dies.

ets_leak rate per_timeslice (fype: non-negative integer, range: any)
Specifies the number of energy tokens removed from each cell’s Energy Token Store at
each time slice, on top of those removed for executing instructions. See Section 4.5.

et_value_constant (fype: real number, range: any)
Partially determines the number of instructions a given cell is allowed to execute at each
time slice. See Section 3.3.

et_value_power (fype: real number, range: any)
Partially determines the number of instructions a given cell is allowed to execute at each
time slice. See Section 3.3.

default_ets_level of _ancestor (fype: non-negative integer, range: any)
Specifies the default number of energy tokens given to each inoculated ancestor program
at the start of the run. This default can be overridden if a different number is specified in
the ancestor.ini file for a user-defined ancestor.

number _of_energy_tokens_per_collect (fype: non-negative integer, range: any)
Specifies the number of energy tokens that a cell will attempt to collect from the envir-
onment for each execution of the et_collect instruction. The actual number of energy
tokens collected depends upon availability. See Section 6.3.

max_energy_tokens_per_cell (fype: non-negative integer, range: any)
Specifies the maximum number of energy tokens that a cell can store in its Energy Token
Store.

info_string size limit (type: positive integer, range: any)
Specifies the maximum length of any InfoString object in the system. This imposes an
upper limit on the size of genomes, environmental messages, etc.

31

stack_size_limit ({ype: non-negative integer, range: any)
Specifies the capacity (maximum number of items) of the cells’ stacks.

rms_size limit (fype: non-negative integer, range: any)
Specifies the capacity (maximum number of messages) of the cells’” Received Message
Stores.

neighbouring genomes_readable (type: boolean, range: {yes,no})
Specifies whether the genomes of neighbouring cells are imported as messages into the
Received Message Store and checked for binding sites when a newly active promoter is
searching for a binding site. See Section 4.7.

A.7 Mutations and Flaws

apply mutations (fype: boolean, range: {yes,no})
Specifies whether mutations are to be operative during the run. If set to no, then the asso-
ciated parameters mutation period and mutation_application_period have no effect.

mutation_period (fype: non-negative integer, range: any)
Specifies the expected number of bits within the cells of all the organisms in the population
that will be unaffected by mutations between successive bits which are affected, at each
application of the mutation procedure.

mutation_application period (fype: non-negative integer, range: any)
Specifies the period (expressed as a number of time slice sweeps) between successive ap-
plications of the mutation procedure.

apply_flaws (type: boolean, range: {yes,no})
Specifies whether the flawed execution of instructions is to be operative during the run. If
set to mno, then the associated parameters default flaw period and
flaw_period max_change_per_thou have no effect.

default_flaw period (fype: non-negative integer, range: any)
Specifies the default flaw period initially associated with inoculated ancestor programs.
This is the expected number of successful executions of instructions by the Cosmos op-
erating system between successive flawed executions. This default can be overridden if a
different number is specified in the ancestor.ini file for a user-defined ancestor.

flaw_period max_change per_thou (fype: non-negative integer, range: any)
Specifies the degree to which a cell’s flaw period may be changed by a single mutation.
Expressed in parts per thousand. The flaw rate may be mutated to any number in the
range of its current value plus or minus the specified fraction of that value.

A.8 Input and Output

species_count_export_period (fype: non-negative integer, range: any)
Specifies the period (expressed as a number of time slice sweeps) between successive outputs
to the file concentrations.dat.

species_count_threshold for_recording (fype: non-negative integer, range: any)
Specifies the minimum number of individuals of a given species (genotype) that must

32

coexist in the population before information about that species is written to the file
species_current.dat.

max_output _file_size (fype: non-negative integer, range: any)
Specifies the maximum size (in number of bytes) of output files. When an output file ex-
ceeds this threshold it is closed and compressed, and a new file (with a different extension)
is opened for writing. See Section E.

morgue record_period (fype: non-negative integer, range: any)
Specifies the expected number of deaths of eligible organisms between successive recordings
of information about the death of an eligible organism (i.e. an organism of a genotype that
has already been recorded in the file species_current.dat) into the file morgue.dat.

backup_period (type: non-negative integer, range: any)
Specifies the period (expressed as a number of time slice sweeps) between successive
backups of the run being written to the file autosave.ser.

record neutral model data (fype: boolean, range: {yes,no})
Specifies whether data for the run is to be written to the file neutral.dat for subsequent
playback as a neutral model. See also run neutral model.

neutral model data export_period (fype: non-negative integer, range: any)
Specifies the period (expressed as a number of time slice sweeps) between successive record-
ings of information to the file neutral.dat. Only relevant if the parameter
record neutral model_data is set to yes.

group_zero_length genotypes (type: boolean, range: {yes,no})
Specifies whether all organisms of zero length are to be regarded as belonging to the same
genotype (i.e. 0AAAA) for the purposes of data collection and analysis.

visualisation recording on (fype: boolean, range: {yes,no})
Specifies whether visualisation output files (‘movie’ files) are to be recorded for the run.

visualisation record_energy only (type: boolean, range: {yes,no})
Specifies whether only the energy-related visualisation files will be recorded, or whether
they all will be. This is only relevant if visualisation recording on is set to yes.

visualisation_intersample period (type: non-negative integer, range: any)
Specifies the period (expressed as a number of time slice sweeps) between the beginning
of recording of successive samples of the visualisation data. This is only relevant if the
parameter visualisation recording on is set to yes.

visualisation_intrasample period (type: non-negative integer, range: any)
Specifies the period (expressed as a number of time slice sweeps) between successive re-
cording of visualisation data within a single sample period. This is only relevant if the
parameter visualisation recording on is set to yes.

visualisation_sample_size (fype: non-negative integer, range: any)
Specifies the number of data points (i.e. the number of recorded time slices) for each sample
in the visualisation data. Only relevant if the parameter visualisation recording on is
set to yes.

33

B The REPLiCa Instruction Set

The instruction set of the REPLiCa programming language contains 62 instructions in total, as
listed below. The user is able to include and exclude any of these instructions from the available
instruction set for any particular run of the system, according to the specification of the genetic
code in the input file genetic_code.ini (described in Section E)

In the following description of the instructions, RMS stands for Received Message Store, CWM
for Communications Working Memory, and NWM for Nucleus Working Memory. ADRString refers
to the string pointed to by ADRStringPointer (mentioned in Section 4.8); this is the InfoString
upon which the adr and mov_ic instructions will act. This may be the cell’s own genome, or it
may be a message in the cell’s Received Message Store. ADRStringPointer can be changed to
point to a different InfoString with the str_switch and similar instructions. A register enclosed
in square brackets (e.g. [ax]) indicates the contents of the memory location specified by the
value of that register.

Some of the instructions relating to regulators (e.g. reg_create), and to searching for binding
sites (e.g. adr), must be immediately followed by a valid binding site specification if they are
to operate correctly. A valid specification is a consecutive string of nop instructions (i.e. taken
from the set {nop_00, nop_01, nop_-10, nop_11}).

A few instructions involve actions which occur in a particular direction relative to the cell
executing them (e.g. move, et_transport). In these cases, the direction is specified by the low 3
bits of the cx register. This gives a number between 0 and 7, which corresponds to the directions
shown in Figure 3(a).

e Register Manipulation Operations

push_a ; push ax onto stack

push_c ; push cx onto stack

pop-a ; pop stack into ax

pop_c ; pop stack into cx

swap_ab ; ax=bx, bx=ax

swap_cd ; ¢x=dx, dx=cx

mov_ic ; copy one instruction from ADRString, starting

; from address [ax], into cx. The length of the
; instruction copied is written to dx. ax += dx.
; If ax>length of ADRString, flag=true.

clr_f ; flag=false

inc_a ; increment ax (if overflow, flag=true)
inc_c ; increment cx (if overflow, flag=true)
dec_c ; decrement cx (if underflow, flag=true)
add_cd ; cx=cx+dx (if overflow, flag=true)
sub_cd ; cx=cx-dx (if underflow, flag=true)
sub_ab ; cx=ax-bx (if underflow, flag=true)

34

Zero_c
not_c
and_cd
or_cd
shl_c

shr_c

not_lo_c

’

2

cx=0
cx=NOT cx (bitwise)
cx=cx AND dx (bitwise)
cx=cx OR dx (bitwise)
shift bits in cx left
(1o bit <- flag, hi bit -> flag)
shift bits in cx right
(hi bit <- flag, lo bit -> flag)

; £lip low bit of cx

Flow of Control Operations

if_f1

if_not_£f1

if_z

stop

set_jmp

clr_jmp

jmp

if (flag=false) increment instruction pointer
otherwise do nothing

if (flag=true) increment instruction pointer
otherwise do nothing

if (cx!=0) increment instruction pointer
otherwise do nothing

stop execution and unbind current promoter

point the local jump marker to the next
instruction

clear the local jump marker

if local jump marker is set, jump to that
instruction, otherwise do nothing (set flag=true)

Nucleus Working Memory

nwm_clear

nwm_write

nwm_write_bit

nwm_divide

2

Erase the NWM WritableInfoString

Copy first n bits of cx to the end of the NWM,
where n is given by the low 4 bits of dx.

Copy the first bit of cx to the end of the NWM.

Create a new single-celled organism by copying
NWM WritableInfoString as the new genome,
splitting the contents of the regulator stores
and Energy Token store, and creating an initially
empty RMS and CWM. The NWM of parent cell is
empty after the division. Child cell is placed
randomly at a free location near the parent (no

35

nwm_split

preferred direction).

Transfer contents of NWM into a new cell which
will become an additional process of the
multicellular organism. Child cell is placed in a
position relative to the parent specified by the
low 3 bits of the cx register. If this location
is already occupied, the nearest free neighbour
is occupied. If all 8 neighbours are occupied,
child cell replaces the parent (parent dies).

e (Inter-organism) Communications Working Memory

cwm_clear

cwm_write

cwm_write_bit

cwm_send

2

2

Erase the CWM WritableInfoString

Copy first n bits of cx to the end of the CWM,
where n is given by the low 4 bits of dx.

Copy first bit of cx to the end of the CWM.

Transfer contents of CWM to an
EnvironmentalInfoString at the current grid
position of the cell, with a type given by the
low 4 bits of dx. The msg is given a standard
intensity. This msg replaces any existing msg at
that grid posn with the same msg type. After the
instruction is issued, the CWM is emptied. If
another cwm_send is sent within n time slices of
the last one (and msg type is the same, and CWM
is now empty), the intensity of the existing msg
at that grid pos with msg type=dx is increased
(by a standard amount).

e Received Message Store

rms_receive

Receive msg(s) from environment. One execution of
this instruction will search over a catchment
area of 1/8th of a full circle (45 degrees), in a
direction specified by the low 3 bits of the cx
register. The search is for messages of String
type specified by the low 4 bits of the dx
register. Each search initially spreads out from
the cell and covers a fixed number (n) of grid
cells (specified by the parameter
rms_receive_search_area) and all msgs of the
right type are received and added to the end of
the RMS. If another rms_receive is issued for the

36

same String type and same direction within a
fixed number of time slices (specified by the
max_time_for_msg_receive_reinforcement
parameter), the current search continues outwards
(covering n more grid positions).

e Energy token collection / transfer

et_collect

et_transport

et_check

e Regulators

’

’

’

; if (environmental energy token available)

pick up n tokens from environment

(n specified by global parameter

number_of_energy_tokens_per_collect)
else

flag=true

if ((number of tokens in store >=
ets_lower_threshold)
&&
(there is a cell belonging to the same
organism in the direction indicated by the
lower 3 bits of cx))
send n tokens to neighbouring cell in
direction indicated (n specified by
the global parameter
number_of_energy_tokens_per_collect)
else
flag=true

; cx=current level of energy token store

[the following instructions all work for both promoters and
repressors. To work correctly, they must both be followed by two or
more nop’s. The first nop specifies whether a promoter or a
repressor is being referred to (nop_00 and nop_01 indicate a
promoter, and nop_10 and nop_11 a repressor). The second and
subsequent nop’s specify the binding pattern of the regulator.]

reg_destroy

reg_transport

’

’

’

; if ((valid binding site specification follows

instruction) &&
(a matching regulator exists in the store))
remove one of the matching regulators
else
flag=true

; if ((valid binding site specification follows

instruction) &&

37

reg_create H

e NOPs / Binding Site

nop_00 ;
nop_01 ;
nop_10 ;
nop_11 ;

(a matching regulator exists in the store) &&
(there is a cell belonging to the same
organism in the direction indicated by the
lower 3 bits of cx))
send one matching regulator to neighbour
cell indicated (removing it from store in
first cell).
else
flag=true

if two or more nop’s follow, create a regulator
from the specified bit pattern and place it in
the appropriate regulator store. If the first nop
is a nop_00 or a nop_01, create a promoter with
bit pattern specified by the second and
subsequent nop’s, and place it at the bottom of
the list in the Promoter Store. Otherwise (if the
first nop is a nop_10 or a nop_11), create a
repressor with bit pattern specified by the
second and subsequent nop’s, and place it in the
Repressor Store, checking for possible binding
sites on the Genome (and other eligible
InfoStrings in the Received Message Store).

Specification
symbols for specifying binding sites (used in

creating promoters and repressors, and by
adr instructions)

e Searching for Binding Sites

adr ;

adrf ;

adrb ;

if ((valid binding site specification follows
instruction) &&
(a matching binding site is found on the
ADRString))
ax = address of the memory location
immediately succeeding the
nearest matching template
else
flag=true

as adr, but only searches forwards from current
position of read-head on ADRString

as adr, but only searches backwards from current

38

str_switch

str_switchf

str_switchb

str_host

str_latest

str_next

str_previous

str_remove

; position of read-head on ADRString

; if (there exists an InfoString with type=low 4

bits of dx)
ADRString=first matching String found

; else

flag=true

; as str_switch, but only searches forwards from
; current ADRString

; as str_switch, but only searches backwards from
; current ADRString

; ADRString=cell’s genome String

; ADRString=last String in RMS list

; ADRString=next String in RMS list. If at end,

; loop back to the cell’s genome String. If on the

; genome String, move to first String in RMS.

; ADRString=Previous String (i.e. just the
; reverse of the action of str_next)

; if (there exists an InfoString with type=low 4

bits of dx in the RMS)
remove first matching string found

; else

flag=true

Cell Movement Operations

move

migrate

; Attempt to move cell (and whole organism) in the
; direction specified by the low 3 bits of the cx
; register. For multicellular organisms, each cell
; that issues a move instruction during a time

slice is actually casting a vote for the desired

; direction of movement. The overall effect of this
; 1s given by a formula described elsewhere.

; Attempt to move cell relative to other cells in
; the organism in a direction specified by the low
; 3 bits of the cx register. If direction if full,
; nearest free direction is taken. If no free

; direction is available, migration has no effect

(flag=true) . Note that migration for a single

; celled organism has the same effect as a move

39

; instruction.
e Killing the current process (cell)

kill ; Kill current cell. Any energy tokens in the
; cell’s Energy Token Store are added to the
; current grid position’s store. Note that if cell
; was part of a multicellular organism, cell death
; may lead to the organism physically breaking up
; into two or more distinct organisms.

C Predefined Ancestor Programs

C.1 Ancestor Al

This self-reproducing program operates by copying itself one instruction at a time into the
Nucleus Working Memory. Tt is assumed that the program starts at memory location zero (as
is usually the case); no attempt is made to look for a binding pattern to calculate the start
address. Similarly, copying continues until an execution of the instruction mov_ic sets the flag,
which indicates that the end of the program has been reached. When copying is complete, the
nwm_divide instruction is issued to produce the offspring. A promoter is provided that will
attach itself to the beginning of the program to initiate execution. A new promoter of the same
type must be produced by the program itself, to be passed on to its offspring. The program
listing is as follows:

1-2 101100111000 Start marked with a specific binding pattern
3 et_collect Collect some energy
4 nwm_clear
5 zeroc
6 pushc
7 pop-a ax=0 (i.e. points to start of program)
8 set_jmp
9 et_collect
10 clr_f
11 mov_ic Main loop:
12 if not_f1l Copy instructions one at a time into
13 nwmuwrite the Nucleus Working Memory, and check
14 if f1 whether end of program has been reached
15 clr_jmp
16 jmp
17 reg.create Create a new regulator:
18 nop_-00 The regulator will be a promoter
19 nop-10
20 nop-11 These nop’s specify a promoter
21 nop-00 that match the binding pattern
22 nop-11 at the beginning of this program
23 nop-10
24 nop-00
25 nwmdivide
promoter 101100111000 Initial promoter

40

C.2 Ancestor A2

This self-reproducing program works in a similar fashion to ancestor Al. The difference is that
it explicitly searches for its beginning and end positions by looking for appropriate binding sites,
rather than assuming that copying should start from memory address zero and continue until
execution of the instruction mov_ic sets the flag. The program listing is as follows:

1-2 101100111000 Start marked with a specific binding pattern
3 et_collect
4 et_collect
5 nwmclear
6 adrb
7 mnop-10
8 mnop-11 Search for binding pattern
9 nop-00 at start of program
10 nop-11
11 nop-10
12 nop-00
13 push.a
14 pop-c
15 et_collect
16 dec._c
17 dec_c
18 dec.c
19 dec.c We now have to subtract the
20 decc length of the binding pattern
21 decc (12 bits) to get the address
22 decc of the actual start of the
23 decc program
24 decc
25 decc
26 decc
27 decc
28 pushc
29 pop-a
30 swap-ab
31 et_collect
32 adrf
33 nop0O1
34 nop-00 Search for binding pattern
35 nop-11 at end of program
36 nop-00
37 mnop 01
38 nop-11
39 swap-ab
40 set_jmp
41 et_collect
42 et_collect
43 clr_f
44 mov_ic
45 push_c
46 swap-cd
47 push._c
48 swap-ab

41

49 sub_ab

50 swap-ab
51 pop=c
52 swap._cd
53 pop-—c

54 if not_f1l
55 nwm_write

56 if_fl
57 clr_jmp
58 jmp

59 et_collect
60 reg create

61 nop-00

62 nop-10

63 mnop-11

64 nop_00

65 nop-11

66 nop-10

67 nop-00

68 nwmdivide
69 stop

70-71 010011000111 End marked with a specific binding pattern

promoter 101100111000

D Running Cosmos

Cosmos is started with the following command:

cosmos [OutputDirectory] [InputDirectory]

OutputDirectory and InputDirectory are optional arguments to tell the program where
to place output files and where to search for input files. If only one directory is specified, it
is taken to be the output directory. The system is configured via the input files params.ini,
genetic_code.ini and ancestor.ini, described in Section E. If either the input or output
directory is unspecified when the program is started, the current working directory will be used
by default.

E Format of Input and Output Files

The formats of the various input and output files are described below. With the exception of
the automatically generated backup file (autosave.ser), all files are in ASCII format.

E.1 Input Files

When a Cosmos run commences, the program will search for the three files listed below. Cosmos
will look for these files in the current working directory, unless a different input directory is spe-
cified as an argument when the program is started. The files genetic_code.ini and params.ini
are always required. The file ancestor.ini is only required if the parameter ancestor is set to
user_defined.

42

E.1.1 The Genetic Code (genetic_code.ini)

The mapping between the bit string representation of instructions in a cell’s genome and the
instructions listed in Section B is defined in the file genetic_code.ini. The format of the file

is shown in Figure 7.

000000 instruction_1
000001 instruction_2
000010 instruction_3

111111 instruction_64

Figure 7: Format of the genetic_code.ini file.

Note that the file must contain a mapping for each of the 64 six-bit codons (although they
do not have to be listed in any particular order). It is permitted for multiple codons to point
to the same instruction; if this is the case, fewer than 64 instructions are therefore available for

organisms to use.

E.1.2 Parameter specification (params.ini)

Non-default parameter values may be specified in this file. The format is shown in Figure 8. The
allowable section names are: inoculation, startinfo, termination, environment, organism,
cell, mutation and io. These correspond to the groupings of parameters in Section A. The
parameter names and allowable values are as listed in Section A. The file params.ini may also
contain blank lines, and comments (lines beginning with the % character).

[section name 1]
parameter name_l=value_1
parameter name _2=value_2

parameter name_Nl=value N1
[section name_2]

parameter name_l=value_1
parameter_name_2=value_2
parameter_name_N2=value N2
[section name NJ]

parameter name_l=value_1
parameter_name_2=value_2

parameter name_N3=value N3

Figure 8: Format of the params.ini file.

43

E.1.3 User-defined ancestor programs (ancestor.ini)

If the parameter ancestor is set to user_defined, Cosmos looks in the ancestor.ini file for
a description of the ancestor(s) to be used to inoculate the environment at the beginning of the
run. The format of this file is shown in Figure 9.

ancestor_l_description
it
ancestor_2_description
it
ancestor N_description

Figure 9: Format of the ancestor.ini file.

Any number of different ancestors may be specified, each separated by the line ###. If
multiple ancestors are defined in this file, they are introduced alternately into the environment
during inoculation, until the specified total number of organisms has been reached (see the
description of the parameters number and placement in Section A). Each ancestor description
is a consecutive sequence of lines, each of which may be any one of the following:

1.

2.

A blank line.

A comment (commencing with the % character).

. An explicit bit string to be directly added to the ancestor’s genome. Specified by a line

consisting of a string composed of the characters 0 and 1. Useful for specifying binding
patterns.

. An instruction (as listed in Section B). This has the effect of writing the bit string

corresponding to the instruction (as defined in the file genetic_code.ini) to the ancestor’s
genome.

. An instruction enclosed in square brackets [1. This has the effect of determining a se-

quence of nop instructions (i.e. taken from the set nop_00, nop_01, nop_10, and nop_11)
corresponding to the bit string representation of the specified instruction. The bit string
representation of this string of nops is then written to the ancestor’s genome. Useful
for writing code that will produce regulators which will bind to a particular sequence of
instructions (without requiring the programmer to know the bit string representation of
these instructions).

. A promoter to be added to the ancestor’s promoter store. Specified by a line beginning with

p: followed by a string composed of the characters 0 and 1 representing the promoter’s
bit string.

. A repressor to be added to the ancestor’s repressor store. Specified in same way as pro-

moter, but with line starting r:.

. An initial energy level for the ancestor. Specified by a line beginning with e: followed by

a number to represent the desired energy level.

. An initial flaw period for the ancestor. Specified by a line beginning with f: followed by

a number to represent the desired flaw period.

44

A valid ancestor description consists of at least one instruction and one promoter. If no ini-
tial energy level or flaw period are specified, the default values defined by the parameters
default ets_level of _ancestor and default flaw period, respectively, are used. If mul-
tiple ancestors are defined, they are distributed alternately across the environment, as described
in Section A under the description of the placement parameter.

E.2 Output Files

As the run proceeds, Cosmos writes data to various output files. These are stored in the current
working directory unless a different output directory is specified as an argument when the
program is started. As Cosmos runs can last for an indefinitely long time (if no limit is set on
the length of the run by the parameters limited run and number_of_timeslices), the output
files could also potentially grow indefinitely large. In order to keep the files at a manageable size,
Cosmos breaks down the files described below (except for run.log, species_current.dat and
autosave.ser) in the following way: each filename is given an additional extension, which is
initially .AA (e.g. concentrations.dat.AA). When the size of the output file exceeds a threshold
(set by the parameter max_output_file_size), Cosmos closes the file, compresses it (using gzip),
and opens a new file with an incremented extension name (i.e. the second file will have the
extension .AB). Writing continues in this new file until that too reaches the threshold size, and
the compression procedure is repeated.

E.2.1 General Information About Run (run.log)

The file run.log contains the following information about the run:
1. Cosmos version number.
2. Run comment (specified by the parameter comment).
3. Time run commenced.

4. A listing of the genetic code (as specified in the file genetic_code.ini). Includes a list of
instructions that have multiple codon mappings, and a list of instructions which have no
codon mappings.

5. A listing of the ancestor(s) being used. Includes the bit string representation and corres-
ponding instructions, together with the initial promoters, repressors, energy level and flaw
period, and the ancestor’s ID number.

6. A full list of system parameters together with their values.

7. The number used to seed the random number generator. If the run has been re-started,
the new seed is also listed, together with the time slice at which the run re-commenced.

8. The time at which the run finished, together with the time slice at which it stopped, and
a comment to indicate why the run terminated.

All except the final item on the above list are written to the run.log file at the beginning
of the run. The final item is written when the run terminates.

45

E.2.2 Species Concentrations (concentrations.dat)

At regular intervals determined by the parameter species_count_export_period, summary in-
formation about the species currently in the population is written to the file concentrations.dat.
This file has a two-line header which is required by the actiview program.?! Subsequent lines
of the file are of the format:

TimeSliceNumber: Speciesl-ID Speciesl-Number;Species2-ID Species2-Number; ...
;SpeciesN-ID SpeciesN-Number;

where SpeciesN-Number is the number of individuals of genotype SpeciesN-ID in the pop-
ulation at time slice TimeS1iceNumber.

E.2.3 Species Details (species_current.dat, species_extinct.dat)

Whenever a new organism is born, a check is made to see whether the number of individuals
of that genotype currently in the population exceeds a threshold defined by the parameter
species_count_threshold for_recording. If this threshold is exceeded, and if information
about the species has not previously been recorded in the file species_current.dat, then a line
is appended to the file containing information about the species. The format of the line is:

SpeciesID ParentSpeciesID TimeOfFirstOccurrence InitialReadingFrame Genome

where ParentSpeciesID is the ID of the species from which the present species is descended;
Time0fFirstOccurrence is the time slice in which the first organism of the species was born;
InitialReadingFrame is the frame in which the genome of the first organism of the species
is being translated, expressed as a number in the range 0-5 (because codons are 6 bits long)
indicating an offset from the beginning of the genome; and Genome is a full listing of the species’
genome (written as a bit string).

When a species which has been recorded in species_current.dat becomes extinct, the
record of that species is removed from this file, and transferred to species_extinct.dat. When
this happens, two extra fields of information are appended to the line describing the species:
TimeOfExtinction and FinalReadingFrame (the reading frame in which the last organism of
the species was being translated).

E.2.4 Information on Individual Organisms (morgue.dat)

When an individual organism dies, if it is of a species which has already been recorded in the
file species_current.dat, then information about the organism is considered for recording in
the file morgue.dat. To restrict the size of this file, eligible organisms only have a 1 in N chance
of being recorded in it, where N is determined by the parameter morgue_record period. Each
line of the file is of the format:

2L pctiview is a program developed by Emile Snyder and Mark Bedau at Reed College in the USA, to produce
various summary statistics and graphs depicting the evolutionary activity of the run. These are described in
Section 5.1 (pp.105-110) of [Taylor 99].

46

TimeSliceNumber SpeciesID-Numeric SpeciesID-Alpha TimeOfBirth LastReadingFrame
NumberFaithfulOffspring NumberUnfaithfulOfspring TimeOfFirstFaithfulOffspring
TimeOfSecondFaithfulOffspring FlawRateAtBirth MaximumCellsInOrganism
ForeignCodeExecution

where SpeciesID-Numeric and SpeciesID-Alpha are the numeric and alpha components
of the SpeciesID of the organism (which are split to make subsequent extraction of organ-
ism genome length data easier); NumberFaithfulOffspring is the number of faithful offspring
that the organism gave birth to (and NumberUnfaithfulOfspring has a similar meaning re-
lating to unfaithful offspring); TimeOfFirstFaithfulOffspring is the time slice at which
the organism gave birth to its first faithful offspring, or 0 if it did not achieve this (and
TimeOfSecondFaithfulOffspring has a similar meaning relating to the second faithful off-
spring); MaximumCellsInOrganismis the maximum number of cells that the organism was com-
posed of at any stage of its life; and ForeignCodeExecution is 1 if the organism ever executed
any code from its Received Message Store during its lifetime, and 0 otherwise.

E.2.5 Phylogenetic Information (phylogeny.dat)

Information about the phylogeny (ancestry) of all species that arise during a run is recorded in
the file phylogeny.dat. Each line of this file is of the format:

SpeciesID,ParentSpeciesID

where ParentSpeciesID (the immediate ancestor of SpeciesID) is set to O for the record of
a species that was used to inoculate the system at the start of the run. The entire phylogeny of
any species can therefore be reconstructed from the data in this file, right back to an ancestor
used to inoculate the system at the start of the run; the Perl script phyl will print the full
phylogenetic tree for a species passed in as an argument.

E.2.6 Neutral Model Data (neutral.dat)

If the parameter record neutral model_data is set to yes, Cosmos will record data about the
run in the file neutral.dat. The period between successive updates to this file is set by the
parameter neutral model_data_export_period. The data in neutral.dat can subsequently be
used to run a neutral shadow of the run (see the description of the parameter run neutral model
in Section A). The first two lines of the file are a header: the first line records the size of the
environment (as specified by the parameter grid_size), the number of organisms with which
the system was inoculated at the start of the run (as specified by the parameter number), and
the maximum number of cells allowed in a multicellular organism (as specified by the parameter
max_cells per_organism); and the second line is a separator. Each subsequent line of the file
is of the format:

47

TimeSliceNumber NewSpecies OrganismBirths CellSplitInfo CellDeathInfo
OrganismFissionInfo OrganismMovementInfo

where NewSpecies is the number of new species that have appeared in the population in the
period since the previous line of the file was recorded; OrganismBirths is the number of new
organisms that were born in that period; Ce11SplitInfo shows the number of organisms which
grew in size (by executing the instruction nwm_split), followed by a list of the size (in terms
of number of cells—Dbefore the cell division) of each such organism; CellDeathInfo shows the
number of cells that died, followed by a list of the size (before the cell death) of the organism to
which each one belonged; OrganismFissionInfo shows the number of organisms which fissioned
(due to cell death), followed, for each one, by the number of fragments (new organisms) that
resulted from the fission, and a list of the size of each new organism; and the final block of
information, OrganismMovementInfo, shows the number of organisms which moved, followed,
for each one, by a triplet of numbers indicating the size of the organism, and the z and y
components of its movement.

E.2.7 Backup File (autosave.ser)

Cosmos records its state at regular intervals during a run, so that in the event of a run being
stopped prematurely, it can be restarted from the last saved position. The time period between
saves is set by the parameter backup_period. The data is recorded to the file autosave. ser.
Should a run need to be restarted from this file, it should be placed in the input directory, and
the system started with the parameter restart set to yes. The format of the saved data is
somewhat complicated, but the user should not need to worry about this. Occasionally, however,
it may be desirable to extract data from this file, as it contains a complete snapshot of the run
at the given time. If this is necessary, the format can be ascertained by studying the Serialise
method of the class CM_Process, in the source file Process.cc.

E.2.8 Visualisation Output Files

If the parameter visualisation recording on is set to yes, various kinds of data are written
to files for subsequent playback as ‘movies’ of the run. Each file contains data about the spatial
distribution of a particular aspect of the system, at a number of times during the run.

There are seven different aspects of the system that can be recorded in this way. These are:

1. The ages of the cells in the population, expressed as the number of time slices that have
elapsed since their birth (recorded in the file v_age.dat).

2. The number of energy tokens that each cell has in its Energy Token Store (recorded in the
file v_cell energy.dat).

3. A flag to indicate whether each cell has executed any foreign code from its Received
Message Store during its lifetime (recorded in the file v_comms.dat).

4. The number of energy tokens stored at each square in the environment (recorded in the
file v_env_energy.dat).

5. The SpeciesID of each cell, which also indicates the length of each cell’s genome (recorded
in the file v_id.dat).

48

6. The size of each organism, in terms of number of cells (recorded in the file v_orgsize.dat).

7. The direction of movement (if any) of each organism in the previous time slice (recorded
in the file v_move.dat).

Normally, if visualisation recording on is set to yes, then all of these files get written.
However, if visualisation record_energy_only is additionally set to yes rather than no, then
only the files v_cell_energy.dat and v_env_energy.dat are written.

The files are updated during the run at intervals determined by the system parameters
visualisation_intersample period, visualisation intrasample period and visualis
ation_sample_size. Specifically, data is recorded for a number of sample periods during the
run. The number of time slices between successive samples is determined by visualisation_
intersample period. Each sample consists of data for a number of time slices, determined by
visualisation_sample_size. The number of time slices between successive records within a
sample is determined by the parameter visualisation intrasample _period.

At each time slice when a record is to be made, a batch of data is written to each file.
This data is written in grid_size+1 rows of grid_size-+1 columns. The elements of the final
row, and of the final column, are all -1. This extra row and column is added purely to easy
the process of producing a graphical display from the data using the MATLAB visualisation
software package. The remaining elements of the data correspond to individual squares of the
environment. For the file v_env_energy.dat, each element represents the number of energy
tokens available at the corresponding square. For the other files, the element represents data
associated with any cell(s) that are present at the corresponding square. If no cells are present,
the element is given the value -1. If a single cell is present, the element is given the appropriate
value (according to which file is being written) for that cell. If multiple cells are present, the
element contains the appropriate values for each cell, separated by colons (:s).

An extra file, v_idx.dat, is also written along with these other visualisation files. At each
time slice when data is written to the other files, the corresponding time slice number is written
to v_idx.dat.

F Implementation Details

The core of the Cosmos system and REPLiCa programming language is implemented as an
object-oriented system in ANSI standard C++ (with heavy use of the C++ Standard Template
Library). It is compiled with the GNU C++ complier in a Unix (Solaris) environment, but
should be portable to other compilers and platforms.

Cosmos uses the bsd_random() pseudo-random number generator (RNG), which uses the
linear feedback shift register generation technique. bsd_random() does not suffer from some of
the deficiencies of many versions of the standard random() RNG.

49

References

[Adami & Brown 94]

[Matthews 91]

[Ray 91]

[Taylor & Hallam 97|

[Taylor 96]

[Taylor 99]

[Thearling & Ray 94]

[Thearling 94]

Chris Adami and C. Titus Brown. Evolutionary learning in the 2D artifi-
cial life system ‘Avida’. In R Brooks and P Maes, editors, Artificial Life
1V, pages 377-381. The MIT Press, 1994.

R.E.F. Matthews. Plant Virology. Academic Press, San Diego, CA, 3rd
edition, 1991.

Thomas S. Ray. An approach to the synthesis of life. In C.G. Langton,
C. Taylor, J.D. Farmer, and S. Rasmussen, editors, Artificial Life II, pages
371-408. Addison-Wesley, Redwood City, CA, 1991.

Tim Taylor and John Hallam. Studying evolution with self-replicating
computer programs. In P. Husbands and 1. Harvey, editors,
Fourth FEuropean Conference on Artificial Life, pages 550-559. MIT
Press/Bradford Books, 1997.

TJ Taylor. The COSMOS environment and REPLiCa programming lan-
guage. Departmental Working Paper No. 259, Department of Artificial
Intelligence, University of Edinburgh, June 1996.

Tim Taylor. From Artificial Evolution to Artificial Life. Unpublished
PhD thesis, Division of Informatics, University of Edinburgh, 1999.

Kurt Thearling and Thomas S. Ray. Evolving multi-cellular artificial life.
In R. Brooks and P. Maes, editors, Artificial Life IV, pages 283—288. The
MIT Press, 1994.

Kurt Thearling. Evolution, entropy and parallel computation. In
W. Porod, editor, Proceedings of the Workshop on Physics and Com-
putation (PhysComp94), Los Alamitos, November 1994. IEEE Press.

50

