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1 IntroductionThis paper describes the `Cosmos'1 system, developed to study the evolution of self-replicating(parallel) computer programs. The design is based upon Ray's Tierra system [Ray 91], althoughthere are some signi�cant di�erences. For a full account of the motivations for building Cosmos,the reader is referred to [Taylor 99].2 Cosmos Design PhilosophyThe basic approach employed in Cosmos to model an evolutionary process is the same as inTierra. However, many of the design details are di�erent, re
ecting the slightly di�erent goalsmotivating the two systems. One of the original goals of Cosmos was that it should be able tosupport self-replicating programs with some of the features possessed by simple cellular biologicalorganisms, such as mechanisms for communication and response to environmental stimuli (whichmay potentially promote coevolution between organisms), and mechanisms for regulating thegenome (which may promote the evolution of di�erentiated programs).Before continuing, clari�cation should be given of some of the terms that will be used whendescribing Cosmos. Biological terms will often be used, as these tend to be somewhat moreconcise than the associated terms relating to computer architectures. While these biologicalterms suggest the analogy that was in mind when Cosmos was designed, the analogies arecertainly not exact; many simpli�cations and modi�cations obviously have to be made whendesigning such a system. With this is mind, the meanings attached to some biological terms inthe present context are listed in Table 1.Term Meaning in context of CosmosGenotype The instructions that make up a program (the host code within a cell).Genome The structure within a program which stores the program's instructions.In the current context, the terms genome and genotype are used more orless interchangeably.Phenotype The action (behaviour) of a program as its instructions are being executed.Organism A single program, which may be unicellular or multicellular.Cell A single process in an organism. This term encompasses the host code andany foreign code that may be present, together with associated workingmemory, bu�ers, registers and other structures.Unicellular An organism containing a single cell/process (in other words, a serial pro-gram).Multicellular An organism containing multiple cells/processes (in other words, a parallelprogram).Table 1: De�nitions of Biologically-Related Terms Used for Describing Cosmos.Perhaps the most signi�cant di�erence between Cosmos and Tierra is that programs inCosmos cannot directly read the code of their neighbours. Cells can only communicate witheach other (within or between organisms) by message passing (described in Sections 4.7 and7.1). Apart from this intercellular communication, each cell only has read, write and executeaccess within its own cell boundary.1The name Cosmos stands for COmpetitive Self-replicating Multicellular Organisms in Software.4



Among the other important di�erences between Cosmos and Tierra are a number of featuresin Cosmos intended to encourage the evolution of diversity and complexity2 in the competingprograms, rather than just the optimisation of their ancestral algorithms. The most importantof these are the energy token allocation system, described in Sections 4.5 and 6.2, and theregulator system of promoters and repressors which governs the execution of a program's code,described in Section 4.3. The regulator system is closely linked to the programming languagein which the self-replicators are written, introduced in Section 5. Further di�erences betweenCosmos and Tierra are discussed in Section 11.3 Preliminary IssuesBefore going into the details of program representation and behaviour, a few words should besaid about some general features of Cosmos.3.1 Representation of InformationThe underlying representation of many of the components of the Cosmos system is the Bit-String. Four di�erent types of BitString are used: BitStrings, InfoStrings, WritableInfoStrings andEnvironmentalInfoStrings. These are de�ned as follows:BitString A vector of binary digits (i.e. a string of 0s and 1s).InfoString Like a basic BitString, but also has a type associated with it (an integer i in the range0 � i � 15), and a pointer to the current read/write position along the string. A string ofbits belonging to an InfoString cannot usually be altered after its initial creation|it canonly be read. The only exception is that an InfoString may be mutated, which entails oneor more of its its being 
ipped at random.WritableInfoString An InfoString in which the bit string can be written to as well as read from.EnvironmentalInfoString An InfoString that has an intensity (a non-negative real valued num-ber) associated with it.3.2 Spatial StructureThe shared space in which the organisms reside is a two-dimensional grid, divided into discretesquares.3 Each cell in the population is associated with a particular square at any given time.This environment can be con�gured to wrap around, or not to wrap around, in each dimension.More information about the environment in which the cells live is given in Section 6.3.3 Time Slicing and the Top-Level AlgorithmThe Cosmos operating system simulates the parallel execution of a large number of programs. AsCosmos is actually implemented on a serial machine, a form of time slicing is required to achievethis (i.e. at each time slice, a small number of instructions are executed for each program, one ata time). The top-level algorithm that implements this procedure is described in Section 8. At2Many of the design features of Cosmos were intended to promote the evolution of multicellular organismsfrom unicellular ones.3The system has been designed to deal with arbitrary n-dimensional environments, but the current implement-ation requires some minor revisions to allow this. 5



each time slice, it must be decided how many instructions are to be executed for each program.Possibly the most obvious strategy is to execute a �xed number of instructions for each program.However, from an evolutionary point of view, this would introduce selection pressure for smallprograms because, all else being equal, longer programs would take a larger number of time slicesto reproduce. This may or may not be desirable. The decision of how many instructions to runfor each program at each time slice is therefore governed by a couple of parameters which can betuned by the user. Speci�cally, a program of length L bits is allowed to execute N instructionsper time slice, determined by the formula:N = et value constant � Let value powerN is rounded down to an integer value. This allows considerable 
exibility: for example, ifet value power is set to 0.0, then each program executes et value constant instructions pertime slice, regardless of length; if et value power is set to 1.0, then the allocation is linearlyproportional to program length, so evolutionary selection is size-neutral (all else being equal).Further details of time slicing are given in Section 4.5.3.4 Naming of OrganismsFor the purpose of analysis of the system's behaviour, individual organisms are given namesaccording to their genotype. The name is composed of a number followed by a string of (usuallyfour) upper-case alphabetic characters. The number is the length of the genome (expressed asa number of bits) in the organism's initial cell. The character string is a unique identi�er forthat particular genome. Ancestor organisms inoculated into the system at the start of the runare named with the character string AAAA. If an o�spring has an identical genotype to itsparent, it will share the same name. If the o�spring has a di�erent genotype, then it is givena new name (the operating system keeps track of which names have already been issued, toavoid duplication). For example, the �rst organism to appear in the system that di�ers fromthe inoculated ancestors will be named with the character string AAAB. Should all characterstrings up to ZZZZ have been issued for organisms of a particular length, an extra A is addedto the string (so the next organism of that length with a di�erent genotype to its parent will benamed with the character extension AAAAA).4 The Structure of an Individual Cell4.1 OverviewThe basic structure of a single cell is shown diagrammatically in Figure 1. Each cell is aprocess running on the (virtual) Cosmos operating system. A cell has its own program code,working memory, stack, registers and various other structures. The major features of the cellare explained in the rest of this section.4.2 The GenomeThe Genome is an InfoString (i.e. a BitString with an associated type), containing encoded instruc-tions that the cell can execute.4 Which sections of the genome are translated into instructionsand executed is determined by the action of promoters and repressors (see Section 4.3). After4As I am usually referring to the contents of the Genome, rather than to the structure itself, when I use theterm `genome', I will use the standard typeface from now on.6
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a cell has been created, its genome cannot usually be altered, except by the action of mutation(see Section 6.7).4.3 Regulators: Promoters and RepressorsThe translation of the genome is governed by regulators. These are (usually short) BitStrings,and come in two distinct types; promoters and repressors. The cell has a separate store foreach of these two types of regulator, and each store can contain a number of regulators of theappropriate type. Regulators may be added to the Promoter Store and Repressor Store in twoways: either by the cell creating a new regulator (by executing an appropriate reg createinstruction),5 or, in the case of a multicellular program (see Section 4.9), by the cell being senta regulator from a neighbouring cell. A cell can also remove regulators from its Promoter Storeand Repressor Store, by executing an appropriate reg destroy instruction.4.3.1 Promoters and the Promoter StoreThe Promoter Store is an ordered list of promoters. Only the promoter currently at the top ofthe list is active at any given time. The active promoter speci�es the position along the genome6at which translation will begin. When a new promoter becomes active, a search is made alongthe genome for a pattern of bits that matches the promoter bit string.7 If a matching region isfound, the promoter is said to have bound to that region, and translation of the genome beginsfrom the �rst bit to the right of the binding region. If no binding site is found for the activepromoter, or when the translation of the current section of genome is terminated (e.g. when theRead position reaches the end of the genome, when it reaches a repressed region, or when a stopinstruction is encountered), the active promoter is deactivated and placed at the bottom of thelist in the Promoter Store, and the promoter which is now at the top of the list becomes active.4.3.2 Repressors and the Repressor StoreThe Repressor Store is a list of repressors, but, unlike in the Promoter Store, any or all of therepressors on the list may potentially be active at the same time. When a new repressor is addedto the store, a search is made for a binding site on the genome,8 in a similar way as for the activepromoter. If a binding site is found, the repressor is said to be bound to the corresponding areaof the genome, and that area of the genome is said to be repressed. If, during translation of thegenome, the read position moves onto a repressed site, translation ceases at that point and thecurrent promoter is deactivated.4.4 The TranslatorThe process of translating the genome into executable instructions is illustrated in Figure 2. Asthe read head moves along the genome, it passes the string of bits that it reads to the Translator.The Translator has a table that maps bit strings to instructions in the programming language ofthe cells. As soon as the incoming string of bits matches an entry in this table, the Translatorexecutes the associated instruction and the read head is moved along the genome to the nextunread bit. In the current implementation, the map of bit strings to instructions is hard-coded5See Section B for an explanation of the instruction set.6Or on eligible InfoStrings in the Received Message Store. See Section 4.7 for details.7The search begins at the current Read position on the genome, and proceeds outwards in both directionssimultaneously.8Or on eligible InfoStrings in the Received Message Store. See Section 4.7 for details.8



into the Translator, all instructions are encoded by bit strings of equal length (six bits), andall 64 possible six-bit codes have an entry in the table (which means that in some cases, twodi�erent six-bit codes encode the same instruction). Any binary string of length six is thereforeguaranteed to decode to a valid instruction. This hard-coded mapping is de�ned in the systeminput �le genetic code.ini, described in Section E.1.
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Figure 2: Translation of the Genome.In future experiments with the system, the hard-coded mapping from bit strings to programinstructions may be replaced by a mapping which can vary from one cell to the next, and whichcan evolve.4.5 The Energy Token StoreA large number of cells may exist concurrently within Cosmos. In order to run the code of allof these cells, the processor must time slice between each cell, as described in Section 3.3. Inthat section a formula was given which shows how many instructions a cell with a genome of agiven length is allowed to execute at each time slice. However, for the cell to actually executethis number of instructions, it must pay one energy token to the processor for each instruction itexecutes. A cell has a store of energy tokens (which it collects from the environment as describedin Sections 6.2 and 6.3). Furthermore, a cell's Energy Token Store may be leaky, in which case anumber of energy tokens are lost from the store at the end of each time slice, in addition to anythat were used to pay for the execution of instructions. The leak rate of the store is determinedby the parameter ets leak rate per timeslice, described in Section A.4.5.1 Cell DeathIf the number of tokens in this store falls below a particular threshold (de�ned by the global para-meter ets lower threshold, described in Section 9), the cell dies. Additionally, when the max-imum number of cells allowed in the system (as de�ned by the parameter max cells per process)has been reached, the processor will kill o� a number of cells which have the smallest number of9



stored energy tokens,9 in order to make room for new cells. It is therefore essential that a cellmaintains a reasonable level of energy tokens in its store. (There is one other way in which acell may die|it can terminate itself by executing the kill instruction.)When a cell dies, any energy tokens remaining in its Energy Token Store are distributed tothe local environment. More information about energy tokens is given in Section 6.2.4.6 Cell Division and ReproductionIt has already been mentioned that a cell only has read, write and execute permission within itsown boundaries. Considering that the primary function of the cells is to make copies of them-selves in other areas of the system's memory, this may seem like an odd restriction. However,the mechanism of cell division and reproduction employed in Cosmos was inspired (albeit fairlyvaguely) by the process of cell division in biological organisms.The Nucleus Working Memory. Each cell has an area called the Nucleus Working Memory,which is just a WritableInfoString. The cell can compose arbitrary bit strings in this area,10 butin the normal operation of a self-replicating program, it would construct a copy of its genomehere. Thus, rather than directly writing instructions one at a time to a new area of memory (asin Tierra, for example), a Cosmos cell copies its genetic information into its own Nucleus WorkingMemory. When the genome has been copied in this way, the cell may issue a nwm divide or anwm split instruction. These have the e�ect of transferring the contents of the Nucleus WorkingMemory into a new cell, which will be placed at a nearby grid position. The former instructioncreates a cell which is completely separated from the parent cell (i.e. a new child organism),whereas the latter creates a cell which will remain a member of the same organism (i.e. an extraprocess in a parallel program: see Section 4.9).In either case, upon division the contents of the Energy Token Store, Promoter Store andRepressor Store are divided equally between parent and child cell. The other main structuresof the new child cell (i.e. the Nucleus Working Memory, the Received Message Store and theCommunications Working Memory)11 are initially empty.4.7 Inter-Organism Communication StructuresTwo major cell structures remain to be explained; these are the Received Message Store and theinter-organism Communications Working Memory. These two structures are both concerned withcommunications between organisms. The former is used to store incoming messages from otherorganisms, and the latter is used to compose messages to be sent out to other organisms.The communications aspect of these structures is described in more detail in Section 7.1.2,but the part they play in the functioning of the cell is explained here.The Communications Working Memory. The Communications Working Memory, like theNucleus Working Memory, is a WritableInfoString (with a limited maximum length) which a cellcan use to compose arbitrary sequences of bits. A cell can then issue a cwm send instruction to9In this situation, the choice of which cells to kill is actually stochastic, with the level of a cell's Energy TokenStore determining the probability of its being killed.10The only restriction is that there is a maximum length to which these strings are allowed to grow, de�ned bythe global parameter info string size limit. This is to prevent the situation in which a program evolves whichgets stuck in an in�nite loop writing to the Nucleus Working Memory, eventually using up all of the memory inthe system.11The function of these latter two structures is explained in Section 4.7.10



broadcast the contents of the Communications Working Memory into the environment (explainedin Section 6.5). The Communications Working Memory does not directly a�ect the functioningof the cell in any other way.The Received Message Store. Inter-organism messages take the form of BitStrings. Whenthey are being composed in the Communications Working Memory they are WritableInfoStrings,when they are broadcast in the environment they are converted to EnvironmentalInfoStrings, andwhen they are received by others cells into their Received Message Stores, they become plainInfoStrings.A cell can issue a rms receive instruction to receive messages which have been broadcastfrom nearby grid positions. These messages (which are EnvironmentalInfoStrings), like all In-foStrings, have a type (a number between 0 and 15) associated with them, and the value of acell's dx register at the time that it issues a rms receive speci�es which type of messages areto be received. In addition, the search in the environment for EnvironmentalInfoStrings of thespeci�ed type only proceeds in a certain direction; starting from the grid position of the cell thatissued the instruction, the search emanates in one of eight directions, speci�ed by the low threebits of the cx register (see Figure 3(a)). The search proceeds one grid square at a time, coveringall grid squares in the speci�ed eighth of the area around the cell until a certain number ofgrid squares have been searched (de�ned by the global parameter rms receive search area).For example, Figure 3(b) shows a cell searching in direction 1. If rms receive search areais set to 12, say, then the grid positions marked with black dots will be searched. The searchemanates from the cell along a series of wavefronts|the grid position on wavefront 1 is searched�rst, followed by those on wavefront 2, then 3, then 4. At this point, 12 positions have beenvisited, so the search stops. Any EnvironmentalInfoStrings of the speci�ed type found in thisarea are copied into the cell's Received Message Store as InfoStrings. (A cell may extend thereach of a search by re-issuing an identical rms receive instruction from the same grid positionwithin a certain time limit after the �rst one. This time limit is speci�ed by the global para-meter max time for msg receive reinforcement. If a cell does this, the search will continueoutwards from the last grid position searched previously. In the example of Figure 3(b), the gridpositions marked with gray dots, on wavefronts 5 and 6, will be the next 12 positions searchedin this situation.)The host cell may process these received messages, using the str switch and adr instructionsto set the ax register to an address within a message, and using the instruction mov ic tosequentially read the message.Messages in the Received Message Store are normally treated as passive structures whichmay be inspected by the host code, but this is not always the case. As already mentioned, eachmessage in the store has an associated type. The host code of the cell|the genome|beingan InfoString, also has a type associated with it.12 If any message in the Received MessageStore happens to be of the same InfoString type as the cell's genome, then it may potentially beused as additional genetic material, and translated into executable instructions. In other words,promoters and repressors may bind to it in just the same way as they can bind to the genome.If the active promoter does indeed bind to a message in the Received Message Store, translationbegins along it just as it would on the genome. A cell has several lines of defence against suchparasitism, which are mentioned in Section 7.1.2.12The type of the cell's genome cannot be directly altered, and is passed on to children when the cell splitsor divides. However, it is subject to mutation like any other part of the cell (see Section 6.7). Therefore, it ispossible for organisms with di�erent genome types to emerge in the system.11
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y here.Registers There are four (16 bit) registers. The registers ax and bx are used primarily for stor-ing and manipulating addresses, whereas the registers cx and dx are used for arithmetic.The main use of the ax register is to store addresses returned by the adr instruction. This12



instruction looks for a speci�ed bit string along the genome (or other eligible InfoString),and, if found, returns the address of the �rst bit of the matching area into the ax register.The address is simply the (zero-based) position of the bit from the left of the genome.The mov ic instruction can be used in conjunction with adr to read an instruction fromthe genome, at the address pointed to by the ax register, into the cx register. Details ofthese instructions are given in Section B. (There is actually a slight complication involvedwith the use of adr and mov ic; these instructions do not only work with the genome,but can also be used on InfoStrings in the Received Message Store, as already mentioned.Each cell actually keeps a pointer called the ADRStringPointer, which normally points tothe genome. However, it can be changed to point to one of the InfoStrings in the ReceivedMessage Store by the use of the str switch (or similar) instruction. The adr and mov icinstructions always work on the InfoString currently pointed to by the ADRStringPointer.)Flag There is one 
ag, used mainly to signal unusual or error conditions in the execution ofsome instructions.Stack Each cell has a single stack, with a limited maximum capacity (de�ned by the global para-meter stack size limit). Instructions are included in the language for pushing numbersonto the stack and for popping numbers from it.Flaw Rate Each cell has a parameter which de�nes the frequency with which 
aws occur inthe execution of instructions (see Section 6.7). This 
aw rate is subject to mutations(Section 6.7), so it may evolve over time.Statistics and Housekeeping Information There are various other minor structures associ-ated with a cell, mostly concerned with keeping statistics of the cell's lineage and activity(for future analysis) and with keeping track of various activities within the cell. Thesestructures are not explained in detail here, but some are mentioned in passing throughoutthe rest of this chapter where appropriate.4.9 Parallel Programs (Multicellular Organisms)It has already been mentioned that the design of Cosmos was guided by an analogy to cellularbiological organisms (Section 2). In order to model not just unicellular organisms, but alsomulticellular ones, Cosmos has been designed to support parallel programs|an analogy tomulticellularity. Furthermore, it allows programs to dynamically create new parallel processesas they are running, as an analogy to the growth of a multicellular organism from a single celledorigin.All programs in Cosmos are instances of the Organism13 class. An Organism may containone or more Cells (each Cell being essentially an individual process). There is therefore nofundamental di�erence in the representation of serial and parallel programs; a serial program isjust an Organism which has only one Cell, while a parallel program is an Organism with morethan one Cell.13A capital `O' is used here to emphasise that we are talking about the speci�c implementation details. However,as the Organism class encapsulates the functionality of an organism, the two terms can be used interchangeably.Therefore, in the rest of the document I shall just use the term organism (with a small `o'). The same applies forcells and the Cell class.
13



4.9.1 Topology of a Multicellular OrganismIn a parallel program, each cell has a speci�c position in the environment (just like any othercell). The only restrictions on the placement of cells within a parallel program (beyond thosede�ned for all cells by the global parameters) are that every cell within the organism must beadjacent to (i.e. occupy one of the eight neighbouring grid positions) at least one other cellowned by the organism, and that two cells within the same organism cannot share the same gridposition. The topology of an organism is important in terms of its intercellular communications,as any given cell can only exchange regulators and energy tokens with immediately adjacentcells within the organism. By means of this transfer between cells in a multicellular organism,the behaviour of any cell is a�ected by the behaviour of its neighbours. See Section 7.1.1 formore details.As a parallel program develops, an individual cell can actually change its position relative toits neighbours, using the migrate instruction. This gives a cell the opportunity of interactingwith di�erent neighbouring cells throughout the life of the program.4.9.2 Energy TransportAs mentioned above, a cell in a multicellular organism can pass energy tokens from its store toits neighbouring cells, using the et transport instruction. In this way, it is possible for a mul-ticellular organism to develop specialised cells that collect energy tokens from the environmentand distribute them throughout the rest of the organism, leaving other cells free to specialise inother tasks if necessary.4.9.3 FissionIt has already been said that all of the cells comprising a multicellular organism are restricted tobeing located in such a position that they are in contact with (i.e. in an adjacent grid positionto) at least one other cell in the organism. However, as individual cells within a multicellularorganism can die at di�erent times (in the ways described in Section 4.5.1), it is possible to get asituation where a collection of cells that was once connected as a multicellular organism breaksinto two or more unconnected groups of cells because of the death of one of more cells in themiddle of the structure (see Figure 4). If such a situation arises, the separate sub-groups of cellseach now become separate organisms in their own right. Cell division and organism �ssion aretherefore two distinct ways in which a new organism may be created.4.9.4 The Cost of MulticellularityThe cost of being part of a multicellular organism is governed by the global parametermulticellularity penalty factor. That is, for each cell in a multicellular organism, thisparameter represents the number of energy tokens that are deducted from that cell's EnergyToken Store at each time slice for each additional cell with which it is in contact. For example,if a cell is adjacent to two other cells belonging to the same organism (i.e. there are two cellswith which it can exchange regulators and energy tokens), then at each time slice, twice theamount of energy tokens as speci�ed by multicellularity penalty factor are deducted fromthat cell's store. This parameter therefore de�nes how expensive it is for a cell to maintain aconnection with one other cell in a multicellular organism.
14



(a)
A single multicellular

organism

(b)
One cell dies in the

middle of the organism

(c)
The organism fissions

into two smaller organismsFigure 4: An Example of Organism Fission.4.9.5 Organism DeathAn Organism is composed of one or more cells. In Cosmos there is no speci�c idea of an organism,as a whole, dying|rather, an organism dies when the last of its constituent cells dies.5 The Programming Language and RepresentationREPLiCa,14 the programming language in which the self-replicating programs are written, isbased upon the Tierran language [Ray 91], with some changes and additions to support theextra functionality of Cosmos. Like Tierran, REPLiCa has been designed to be robust, in thesense that there is little syntactical structure to a program, so that any random collection ofREPLiCa instructions will form a valid program that will do something (maybe not anythingsensible, but it will not cause the system to crash). The REPLiCa instruction set is listed, withannotations, in Section B.One big di�erence between Tierran and REPLiCa is in the mechanism for control 
owbranching and jumping. Tierran uses a system of template-driven jumping (see [Ray 91] fordetails). REPLiCa does not have jumps of this kind; rather, jumps may be accomplished in twodi�erent ways. The �rst, primarily for single jumps rather than loops, is just by the creation ofan appropriate promoter to bind to the desired jump destination, either followed by the deletionfrom the Promoter Store of the currently active promoter (using the reg destroy instruction), orby the issuing of a stop instruction|both of which have the e�ect of stopping the execution ofthe current section of code and activating the new promoter.15 The second way by which (local)jumps may be performed is by the use of the set jmp and jmp instructions. Each cell contains apointer called the LocalJumpPointer which, if set, points to a position on the genome (or currentlyactive InfoString in the Received Message Store). When a set jmp instruction is executed, thispointer is set to the address of the next instruction. When a jmp instruction is executed, controlpasses to the instruction pointed to by the LocalJumpPointer (if it is set, otherwise no jump isperformed). The LocalJumpPointer can be cleared with the clr jmp instruction.14`REPLiCa' is an acronym for Robust Evolvable Programming Language for Cosmos.15Of course, when programs are evolving, especially when we are considering parallel programs, there maybe more than one promoter in the Promoter Store at one time. However, here we are describing how a humanmight design a program that performs a jump|evolution would probably go about designing a program in a verydi�erent way. 15



The translation of the bit-string representation of a program on the genome, and the controlof execution of the program by promoters and repressors, illustrated in Figure 2, has alreadybeen explained in Sections 4.2{4.4.6 The Environment6.1 The GridAs mentioned in Section 3.2, cells in Cosmos live in a discrete two-dimensional spatial environ-ment (the `grid'). At the start of each time slice, a number of energy tokens are deposited toeach position on the grid (see Section 6.2). Cells can collect these energy tokens by using theet collect instruction (see Section 6.3). If energy tokens are scarce at a cell's current location(or indeed for any other reason), the cell (to be precise, the whole organism) may move aroundthe grid (see Section 6.4). For multicellular organisms, each cell must occupy a di�erent gridposition, i.e. all organisms are `
at' (cells cannot pile on top of each other in the same gridposition). However, cells from di�erent organisms can occupy the same grid position. What thismeans is that all organisms are 
at, but they can `slide over' each other, and in this sense theenvironment is two-and-a-half dimensional.6.2 Distribution of Energy TokensAt the start of each time slice sweep across all of the cells in the population (in the routineDistributeEnergyTokens, described in Section 8), the Cosmos operating system releases acertain number of energy tokens into the environment. These tokens are then available to becollected by cells, by the use of the et collect instruction. At the end of each time slicesweep (in the routine AttenuateEnvironmentalEnergy, also described in Section 8), the op-erating system takes a number of energy tokens away from each grid position. In the currentimplementation, di�erent grid positions may receive di�erent numbers of energy tokens at thebeginning of each time slice sweep (determined by the various distribution schemes describedbelow), but all positions have the same number of energy tokens removed at the end of each timeslice sweep (speci�ed by the parameter number of energy tokens per grid pos per sweep, ifthey have that number available). If the number of energy tokens received by a grid positionin a time slice sweep exceeds the number removed from it, and they are not collected by cellsduring that sweep, the excess tokens remain there for future collection. A grid position maytherefore sometimes accumulate a relatively large number of energy tokens (up to a maximumlimit de�ned by the global parameter max energy tokens per grid pos) if there is not muchdemand for them by cells in the locality.The distribution of energy tokens across the grid may follow a number of di�erent patterns,de�ned by the global parameter energy distribution scheme. At present, four such patternsare de�ned: land, sea, mixed and random. Note that the total number of energy tokens dis-tributed to the environment at each time slice sweep is always speci�ed by the product of theparameter number of energy tokens per grid pos per sweep with the number of squares inthe grid. The di�erent distribution schemes determine how many of these tokens are distributedto individual squares. The di�erent schemes work as follows:Land Each grid position receives a constant number of energy tokens from one time slice to thenext. In the current implementation, there is one extra parameter, x delta, associatedwith this sort of energy distribution, which de�nes the gradient of the distribution from16



the left-hand side of the grid to the right-hand side. See Figures 5(a) and 5(b) for examplesof this type of distribution.Sea In contrast to land distribution, for sea distribution each grid position receives a varyingnumber of energy tokens from one time slice to the next. During each time slice, energytokens are distributed to grid positions which are located under a `wave'|a vertical bandwhich moves one position to the right after each time slice: see Figure 5(c). Grid positionswhich are not located under a wave in the current time slice receive no energy tokens forthat time slice. In the present implementation there are two parameters associated withthis method; wave width and number of waves. The former speci�es the width, in gridpositions, of a single wave, and the latter speci�es how many waves are to be �tted in tothe grid from left to right (the waves are evenly spaced across the grid).Mixed This is a mixture of land and sea distributions, with the top portion of the gridreceiving energy according to the land distribution, and the bottom portion according tothe sea distribution. The relative sizes of these top and bottom portions of the grid aredetermined by the global parameter land fraction. An example is shown in Figure 5(d).Random Energy tokens are distributed in packets with size determined by the global parameterenergy distribution random chunk size to randomly chosen grid positions, until thecorrect total number of energy tokens have been distributed. An example is shown inFigure 5(e).A multicellular organism may also pass energy tokens between its cells (using the et transferinstruction), leading to the possibility of some of the cells specialising in energy token collectionand distribution of these tokens to the other cells in the organism.With such a system of CPU-time allocation, programs may potentially evolve which operateon a wide variety of time-scales. For example, very short programs may exist which quickly grabjust enough energy tokens to make a copy of themselves, while much more complicated programsmay coexist which gather large numbers of tokens over long periods of time, and reproduce ata much slower rate.When a cell dies, any unused energy tokens are passed back to the local environment (wherethey may be collected by other organisms). This mechanism provides potential selection pressurefor the evolution of organisms that kill other organisms in order to collect the energy tokensthus released into the environment. This could happen if, for example, an organism transmittedEnvironmentalInfoStrings containing the kill instruction, which another organism subsequentlyreceived and executed (see Sections 4.7 and 7.1 for further details of how this would work).6.3 Collection of Energy TokensIn the present implementation a choice of two energy collection schemes, shared and private,is provided. The global parameter energy collection scheme determines which scheme willbe used.Shared Energy. Under this scheme, when a cell issues an et collect instruction to collectenergy tokens from the environment, it �rst tries to collect spare tokens from its current gridposition. However, if the grid position does not contain su�cient energy tokens, the cell thenlooks for other cells at the same grid position or in one of the eight neighbouring grid positions.If other cells exist in one of these nine locations, energy tokens will be extracted from the17
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Energy Token Store of one (or more) of these (at random) until the cell has obtained the normalquota of energy tokens for one execution of et collect (as de�ned by the global parameternumber of energy tokens per collect).Private Energy. With this scheme, if the local grid position does not contain enough energytokens for an et collect, the cell just takes what is there, but does not attempt to gainadditional energy tokens from neighbouring cells.6.4 Moving around the GridA cell does not have to remain in its original grid position, but can move around by using themove instruction. The contents of the cx register at the time the instruction is issued determinesin which direction the cell will try to move (the low 3 bits specify a direction from 0 to 7, asindicated in Figure 3(a)).However, movement is complicated by the fact that a cell may be part of a multicellularorganism (in which other cells are also trying to move, possibly in di�erent directions). Theorganism must move as a whole, so what actually happens is that the issuing of a move instructionby a cell is actually a vote to move in a particular direction rather than an instruction that hasimmediate e�ect. At each time slice, an organism counts up all of the movement votes from itsconstituent cells, and decides how to move as follows:A normalised total movement vector A is calculated by summing all the individual votes ofcells within the organism: A = 1n nXi=1 ai (1)where n is the total number of cells in the organism, and ai is the unit vector of movement (inone of eight possible directions) speci�ed by cell i (or 0 if the cell did not issue a move instructionduring the current time slice).A `multiple movement factor', M , is then calculated. This factor determines the extent towhich two or more cells moving in tandem within an organism are more e�cient than would beexpected by simply summing their individual movements. M is de�ned as:M = (m� 1)L+ 1 (2)where m is the number of cells within the organism that individually issued a move instruction;and L is the `constant of leverage' when two or more cells move at the same time (L � 0). L isde�ned by the global parameter movement leverage factor.Movement is further complicated in the situation where the organism is overlapping (orpartially overlapping) another organism on the grid. In this case, there is a `friction' term Fwhich slows the organism down as it attempts to move over other cells. This term is de�ned asfollows: F = on (3)where o is the number of cells in the organism which share a grid position with cell(s) fromother organisms. The friction factor can actually be turned on or o� with the global parameterapply friction factor. If it is turned o�, F is e�ectively set to zero.The total movement that the organism attempts to make, X, is therefore speci�ed byX =M(1� F )A (4)19



The organism moves from its current position by the distance and direction given by X,unless it reaches the edge of the grid, in which case it stops at that point (if the grid boundarydoes not wrap).6.5 Inter-Organism CommunicationsIf a cell broadcasts an inter-organism communication using the cwm send instruction (as men-tioned in Section 4.7), the contents of its Communications Working Memory is packaged intoan EnvironmentalInfoString structure (with an initial intensity speci�ed by the global parameterenvinfostring initial intensity, and a type speci�ed by the low four bits of the dx re-gister). This EnvironmentalInfoString is deposited in the environment in the same grid positionas the cell, where it can be detected by other cells (by using the rms receive instruction,described in Sections 4.7 and 7.1.2).Each grid position in the environment can hold one EnvironmentalInfoString of each of the 16possible types. If a string of the same type already exists in the grid position when a cwm sendmessage is issued, the existing string is deleted and replaced by the new one.At each time slice sweep (in the AttenuateMessageIntensities routine, described in Sec-tion 8), the intensity of each EnvironmentalInfoString is attenuated according to the followingequation: In+1 = k(In)p (5)where In is the intensity at time n, and k and p are constants de�ned by the global para-meters envinfostring decay constant and envinfostring decay power respectively. Whenthe intensity of any string falls below a certain threshold (de�ned by the global parameterenvinfostring lower threshold), the string is deleted.There is one additional feature associated with these EnvironmentalInfoStrings, whereby acell can reinforce the intensity of a message that it has already sent. If the cell re-issuesthe cwm send instruction within a given number of time slices (determined by the parametermax time for msg send reinforcement), while still in the same grid position, and it has notwritten anything else into its Communications Working Memory in the meantime, then the in-tensity of the existing EnvironmentalInfoString is incremented by a small amount.166.6 Environmental InformationAs well as carrying speci�c inter-organism communications (mentioned in Section 4.7 and ex-plained in more detail in Sections 6.5 and 7.1.2), the environment also carries summary inform-ation about itself. These messages are transmitted (in the form of EnvironmentalInfoStrings) bythe environment itself, one at each grid position, and may be intercepted by cells in exactly thesame way as they intercept other inter-organism communications. The messages contain thefollowing information (represented in a binary encoding):� The number of cells at that grid position� The total number of free energy tokens at that grid positionAll of these messages behave just like any other EnvironmentalInfoStrings in the environment;the only distinguishing feature is that they are all given an InfoString type of 15. (There are norestrictions about organisms using the same type number for their own communications.) Theymay be picked up by any cell using the rms receive instruction.16To be precise, the magnitude of the increment is kIp, where I is the current intensity, and k and p are constantsde�ned by the global parameters envinfostring decay constant and envinfostring decay power respectively.20



6.7 Mutations and FlawsLittle has so far been said about the role of mutation in Cosmos. Mutation is a vital processfrom the evolutionary point of view, as it provides a continual source of genetic novelty forselection to work upon. Mutations occur naturally throughout the system at a low rate, andmay a�ect most of the structures within the cell (i.e. the Genome, the Received Message Store,the Nucleus Working Memory, the Communications Working Memory, the Promoter Store, theRepressor Store, the 
aw rate, the stack, the registers and the 
ag). For structures which arebased upon BitStrings, mutations are governed by the global parameter mutation period, whichspeci�es the probability of an individual bit within the structure being 
ipped. For structuresbased upon integer numbers (the 
aw rate, stack and registers), mutations occur at the samerate as for BitStrings, but the details are slightly di�erent. For the 
aw rate, a mutation causesa random increment or decrement in the current value within prede�ned limits.17 For the stack,a mutation will, with equal likelihood, either cause a random number to be pushed onto thestack, or the top number to be popped o� it. For registers, a mutation will cause the register'scurrent value to be replaced by a random value. Mutations also a�ect the cell's 
ag at the samerate, causing the 
ag's state to be inverted.In addition, variety may also be introduced into an organism by the 
awed execution ofinstructions in its genome.18 When a 
aw occurs (which happens at a rate de�ned by anindividual cell's 
aw rate, as described in Section 4.8), the instruction which is about to beexecuted, rather than just being executed once, will either be executed twice (successively) ornot at all. (The choice is random, with both events occurring with equal likelihood.) The e�ectof a 
aw is therefore that instructions may occasionally produce abnormal results, such as aninc a instruction adding 2 to the value of the ax register instead of 1.Despite this distinction between mutations and 
aws, the net results are the same. If theerror a�ects what gets written to the Nucleus Working Memory of a cell just before it issues anwm divide instruction, then it will be passed on to the child organism and become a permanentaddition to the gene pool. On the other hand, if the error does not a�ect the contents of theNucleus Working Memory (even indirectly), and it does not a�ect the regulators that get passedon to any o�spring, then it will only a�ect the current organism and will not be inherited bychild organisms. From an evolutionary point of view, only the former scenario is important.7 Actions and InteractionsThe methods available to cells and organisms for interacting with the `physical' environmentand with other cells and organisms have already been discussed: issues such as the collection ofenergy tokens from the environment, and moving around the grid, were explained in Section 6;intercellular communications (i.e. the transfer of energy tokens and regulators) have been men-tioned in Sections 4.9 and 6.2; and inter-organism communications have been mentioned (fromthe point of view of the mechanisms involved) in Sections 4.7 and 6.5. In the present section,more will be said about some higher-level e�ects and implications of both types of communica-tion.17To be precise, the 
aw rate can change by plus or minus n parts per thousand, where n is determined by theparameter flaw period max change per thou.18Tierra features both mutations and 
aws (although the mechanisms for 
aws is somewhat di�erent) but insubsequent work by Chris Adami and Titus Brown with their Avida system the authors suggested that 
awsplayed only a minor role in evolution compared to mutations [Adami & Brown 94]. Informal observations frompreliminary runs of Cosmos suggested that 
aws in the execution of instructions signi�cantly increase the rate atwhich useful mutants are produced. 21



7.1 Implications of Intercellular and Inter-Organism CommunicationsThe general philosophy governing the design of the communication facilities in Cosmos was toprovide the organisms with as rich an environment as possible. In particular, the inter-organismcommunications instructions allow organisms to exchange arbitrary messages. The idea is that,as in nature, many possibilities for communication are provided by the `physics' of the system.The question of whether these possibilities are realised or not is left to the evolutionary process.7.1.1 Intercellular CommunicationsAs mentioned in Section 4.9, a cell which is a member of a multicellular organism can com-municate with other cells in the organism by sending regulators from its Promoter Store andRepressor Store (using the reg transport instruction). In this way, the execution of code in aparticular cell may be in
uenced by many other cells in the organism, because regulators whichare sent from one cell to another will in
uence which sections of code get executed in both cells.Therefore, although each cell in a multicellular organism has the same genome (assuming thereare no somatic mutations), each cell may be executing di�erent parts of this genome at anygiven time.As a cell within a multicellular organism can only exchange regulators and energy tokenswith its immediate neighbours, organisms adopting di�erent shapes will have di�erent capacitiesfor internal communication and regulation. Within an organism, cells can also actively switchneighbourhoods by migrating to a di�erent position (using the migrate instruction). If multi-cellular organisms do evolve in any runs of Cosmos it will be of interest to see what sorts ofshapes they adopt, and how much variety in shape exists across the population.7.1.2 Inter-Organism CommunicationsThe mechanisms for inter-organism communications were introduced in Sections 4.7 and 6.5. Acell can broadcast an arbitrary message using the cwm send instruction, and receive other mes-sages from the environment|sent from cells in other organisms, cells within the same organism,or from the environment itself (Section 6.6)|using the rms receive instruction. Allowing or-ganisms to exchange arbitrary bit strings has little direct biological analogy. Rather, it is anattempt to equip the organisms with some communication channels in much the way that bio-logical organisms can communicate using channels such as light, sound etc.Once messages (InfoStrings) have arrived in a cell's Received Message Store, they may be readby the host code (using str switch, adr, mov ic and related instructions), and messages of thesame type as the genome of the host cell may even be treated as executable code, as described inSection 4.7. This allows for genetic information to be exchanged between organisms in a manneranalogous to the direct exchange mechanisms employed by lower biological organisms such asviruses and bacteria.If the foreign code is detrimental to the performance of the host cell, the host may be expectedto evolve measures to prevent the foreign code from being executed. This can be achieved in anumber of di�erent ways, such as by using a di�erent type number for its own genome (whichmay come about by mutation), by removing the foreign code from the Received Message Store(using the str remove instruction), or by not receiving the foreign code in the �rst place. If,however, the foreign code is bene�cial to the host, then it may be expected that the host willevolve to copy this code into its Nucleus Working Memory so that it will become incorporatedinto the host genome in future generations. The system is even 
exible enough to allow for thepossibility of the evolution of sexual reproduction.22



InoculatecurrentTimeSliceSweep = 1while (stopping criteria not met){ DistributeEnergyTokensAttenuateMessageIntensitiesExecuteCellTimeSlicesPerformOrganismLevelOperationsif ((currentTimeSliceSweep MOD mutation application period) = 0)ApplyMutationsif ((currentTimeSliceSweep MOD overcrowding check period) = 0)CheckOvercrowdingif ((currentTimeSliceSweep MOD env info broadcast period) = 0)BroadcastEnvironmentalInfoExportDataAttenuateEnvironmentalEnergycurrentTimeSliceSweep = currentTimeSliceSweep + 1} Figure 6: The Top-Level Algorithm.8 The Top-Level AlgorithmA pseudo-code listing of the top-level algorithm is shown in Figure 6. Most of it should beself-explanatory. The Inoculate routine constructs a number of self-replicating programs andplaces them at speci�ed positions on the grid (governed by the parameters ancestor, numberand placement). The stopping criteria for the main loop may be to run for a given number oftime slices (if the parameter limited run is set to yes) or to run inde�nitely (only stopping ifand when all programs on the grid have died out). DistributeEnergyTokens places a number ofenergy tokens in each grid position, as described in Section 6.2. AttenuateMessageIntensitiesrefers to the intensities of any EnvironmentalInfoStrings that currently exist in the environment.PerformOrganismLevelOperations checks, for each organism, whether a �ssion has occurredby the death of one of more cells within it (see under \Fission" in Section 4.9), subtracts energytokens for each cell in a multicellular organism depending on how many neighbours the cell has(see under \The Cost of Multicellularity" in Section 4.9), and �nally calculates and performsany movement of the organism from the contributions made by individual cells (Section 6.4).CheckOvercrowding checks whether the current population of cells on the grid exceeds the limitspeci�ed by the global parameter max cells per process. If so, a fraction of the population(speci�ed by the parameter population cutback on overcrowding) is killed o�. The choice ofwhich cells to kill in this situation is stochastic, but is based upon how much energy each cellhas stored in its Energy Token Store. BroadcastEnvironmentalInfo generates an environmentalmessage of each grid position, as described in Section 6.6. AttenuateEnvironmentalEnergyremoves a number of energy tokens from each grid position, as described in Section 6.2.9 Global ParametersThe Cosmos system as described contains a considerable number of global parameters. Theseare listed and described in Section A. The number of parameters is much larger than in most23



other arti�cial life platforms, but this is largely because other platforms often have many featureswhich are hard-coded in a fairly arbitrary way. In contrast, Cosmos was designed to allow theuser a great degree of control over the system's con�guration.10 Input and Output FilesThe con�guration of an individual run is speci�ed in a number of �les which Cosmos readswhen the run commences. These �les contain details of non-default parameter settings, of themapping between instructions in the REPLiCa programming language and the binary encodingused to represent them in a cell's genome, and of user-de�ned ancestor programs. Full detailsof these input �les are given in Section E.1.The core Cosmos system is a stand-alone application. In order to allow the analysis of anevolutionary run, a number of log �les containing information about the di�erent organismsare written by the system during the run. The �les may then be used to produce graphs andstatistics about the run. These output �les are described in Section E.2.11 Major Di�erences between Cosmos and TierraIn this section the main areas in which Cosmos di�ers from Tierra are highlighted. A fullerexplanation of why some of these di�erences were incorporated into the system can be found in[Taylor & Hallam 97]. In the following, the extension of standard Tierra to deal with parallelprocesses, as described in [Thearling & Ray 94] and [Thearling 94], is referred to as `ParallelTierra'.Cellular Structure. An individual program (or more precisely, an individual process, whichmay be serial or parallel) in Cosmos has many more structures associated with it than doprograms in Tierra. Tierran programs just have the list of instructions, a program pointer,registers and a stack. In contrast, Cosmos programs also have all of the structures explainedin Section 4. The idea was that they should incorporate some of the features (e.g. regulators,translation machinery, and areas where new strings may be constructed) observed in cellularbiological organisms. The programs must rely largely on communications to interact with theoutside world, and cannot directly read the code of their neighbours.Regulator System. The regulator systems of Cosmos (promoters and repressors: see Sec-tion 4.3) have no equivalent in Tierra. They were designed speci�cally to allow cells in amulticellular organism to be able to in
uence which sections of code were being executed inneighbouring cells, thereby promoting cell di�erentiation and specialisation. The design of theregulator systems was inspired by the processes of chemical signalling between cells, and the useof promoter sequences and repressors within cells, in biological organisms.CPU-time Allocation and Energy Tokens. In Cosmos, each cell has to pay one energytoken for every instruction it executes. Cells must collect these tokens from the environment, andstore them in their Energy Token Store. A cell dies when the number of tokens in its Energy TokenStore falls below a threshold (de�ned by the parameter ets lower threshold). Furthermore,if the population size exceeds a threshold (de�ned by the parameter max cells per process),cells are killed o� stochastically, but those with fewer energy tokens in their Energy Token Store24



have a greater chance of being killed. A cell can therefore exert considerable in
uence over itsown longevity, via its success at collecting energy tokens from the environment.In contrast, programs in Tierra have little control over their longevity. As individual Tierranprograms have no notion of energy levels, a separate `reaper queue' mechanism is employedto govern cell death. Programs can move up the queue if they cause error conditions duringexecution, but in general the probability of death increases with age [Ray 91]. The reaper queuetherefore e�ectively imposes an upper limit on the lifespan of programs, whereas there is notheoretical upper limit in Cosmos.Additionally, the energy token scheme in Cosmos introduces the idea of a competitionfor the available energy|an idea which is missing in Tierra. Furthermore, if the parameterenergy collection scheme is set to shared, cells may extract energy tokens from their neigh-bours. In this situation, a cell is a potential energy resource for other cells, and, if environmentalenergy were scarce, it would become advantageous for a cell to kill its neighbours by drainingtheir energy. If cells could defend themselves against such attacks, some sort of coevolutionaryprocess might arise from such interactions.Read, Write and Execute Privileges. Tierran programs only have write access within theirown `cell membrane' (apart from when they are in the process of creating a daughter cell, whenthey also have write access to a speci�c additional chunk of memory, which has been allocated bythe Tierra operating system). A similar situation exists in Cosmos. However, Tierran programshave read and execute privileges for all areas of instruction memory, so that they can directlyexamine the code of other programs, and even execute this code. Cosmos cells, on the otherhand, only have direct read and execute privileges within their own cell membrane, and mustrely on the system's communication facilities to interact with other cells (see Section 7.1). Thisrestriction in Cosmos is related to the guiding analogy of the biological cell, which cannot directlyread the genetic code of a neighbouring cell.Exchange of Messages and Genetic Information. The Cosmos mechanisms for the directexchange of arbitrary messages (which may, for example, be copies of genetic information) haveno parallel in Tierra. This di�erence is linked to the di�erences in read, write and executeprivileges described in the previous point.Division Process. This point is related to the previous two. As a Cosmos cell only has writeaccess within its own cell membrane even when it is composing a copy of itself, this copy must�rst be composed within the parent cell (in the Nucleus Working Memory). The copy is thenissued en masse to a new memory location.In Tierra, a cell is �rst allocated a new block of memory, then writes a copy of itself intothis memory, and �nally `divides', signalling that the block of memory is now a new organismin its own right.There is not a great deal of di�erence between the two mechanisms, but an advantage ofthe Cosmos method is that it allows an organism to reproduce (i.e. to create a child organism)and to grow (i.e. create a new cell which remains a member of the multicellular organism) usingexactly the same technique.In contrast, Parallel Tierra includes a split instruction which adds an additional CPUto the processor structure of the program. This mechanism is natural for a parallel machinearchitecture with a shared program space, as used with Parallel Tierra. In Cosmos memory isnot shared across cells, so that a multicellular program must actually copy itself from one cellto another in order to run in parallel. With this type of architecture, it seems preferable that25



the bulk of such copying work should be performed by the cells themselves rather than by theCosmos operating system.19Additionally, having very similar mechanisms for growth and reproduction of organisms isarguably more analogous to the way that multicellular biological organisms may have evolved.Local Competition. One of the problems that has been observed with the process of evolutionin Tierra is that it su�ers from premature convergence due to global interactions between cells[Adami & Brown 94].Chris Adami and Titus Brown sought to overcome this problem in their Avida system bygiving each of the cells a location on a two dimensional toroidal grid. Cells can only interactwith other cells occupying nearby grid positions, thereby slowing down the rate of propagationof evolutionary changes throughout the total population and promoting heterogeneity.Cosmos addresses this problem by placing organisms on a grid (as in Avida), and by restrict-ing cells to only be able to communicate and interact with other cells within a certain distanceon the grid.20Binary Representation. In Tierra, programs are directly represented as lists of instructions.In Cosmos, the program code is represented as a binary string (speci�cally, an InfoString), and atranslation process is required to produce the executable code. One consequence of this designis the possibility of the evolution of ultra-compact programs which use the same section of bitstring to encode multiple sequences of instructions in di�erent reading frames (as is observed insome biological organisms; [Matthews 91] p.144). Another consequence is that it would be easyto modify the system in order to study the evolution of the genetic code itself (i.e. the mappingfrom bit strings to program instructions).Size of Instruction Set. The REPLiCa instruction set is about twice as big as that ofthe Tierran language. Many of the instructions can certainly be removed without having agreat impact on the things that programs can do (e.g. the self-replicator listed in Section C.1only uses 17 di�erent instructions). If the genetic code were allowed to evolve, then unusedinstructions might be expected to be removed from the code by natural selection, allowingcommon instructions to be represented multiple times.Memory Model. Cosmos uses a distributed memory model of parallelism, in contrast to theshared memory model of Parallel Tierra. In other words, each cell in a multicellular organism inCosmos has its own copy of the program code, of the other cellular structures, and of the CPUstate information (registers, instruction pointer, etc.). This distributed memory model, togetherwith the Cosmos regulator system, should promote the emergence of di�erentiation in parallelprograms. However, little work has so far been conducted with parallel programs in Cosmos, soit is not yet known how e�ective this approach really is.Memory Addressing Scheme. For reading from and writing to structures within cells,Cosmos uses a local addressing scheme for each structure (i.e. the �rst bit of the Genome, ofthe Communications Working Memory, and of the messages in the Received Message Store, areall treated as address zero within that particular structure). Cells have no knowledge of theirmemory location (or that of other cells) in the global addressing scheme of the system. This is in19But see the further discussion on this topic in Section 7.2 (pp.208{212) of [Taylor 99].20But see the further discussion on this topic in Section 7.2 (pp.215{219) of [Taylor 99].26



contrast to Tierra, which uses a global addressing scheme. The only ways that cells can interactwith each other are therefore by communication; by physical contact, such as by extracting en-ergy tokens from each other (which is possible when the parameter energy collection schemeis set to shared|see Section 6.3) and slowing down passing organisms (see Section 6.4); and,for cells within a multicellular organism, by the exchange of regulators and energy tokens.
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AppendicesA Global ParametersAn annotated list of all of the parameters available in Cosmos is presented in this section. Theseare grouped into a number of di�erent categories according to their function. The user mayspecify non-default values for these parameters in the Cosmos input �le params.ini, describedin Section E.A.1 Inoculationancestor (type: enumerated, range: fa1,a2,user definedg)Speci�es the ancestor(s) programs to be used for inoculation. There are two prede�nedancestors (a1 and a2, listed in Section C). If user defined is speci�ed, the ancestor(s)are read from the �le ancestor.ini. The format of this �le is described in Section E.number (type: non-negative integer, range: 1{10000)The number of individual programs to inoculate the system with at the start of the run. Ifmore than one type of ancestor is speci�ed in the ancestor.ini �le, these are introducedalternately until a total of number individuals is reached. If the parameter placement isset to even, then the actual number of inoculated individuals may be slightly smaller thanthat speci�ed by number (see description of placement for details).placement (type: enumerated, range: feven,randomg)Determines the placement of the inoculated ancestors. For even placement, the ancestorsare placed evenly on the grid in a square pattern, where the sides of the square are asclose as possible to the square root of the number speci�ed by the parameter number. Ifnumber is not a square number, the actual number of individuals will therefore be slightlyless than speci�ed. For random placement, individuals are placed completely randomly,and no check is made to see whether the chosen position is already occupied.A.2 Start of Runrng seed (type: integer, range: any)Used to seed the pseudo-random number generator at the start of the run. If rng seed isnegative, then an arbitrary seed is chosen (based upon the current clock time).comment (type: character string, range: any)An optional description of the run, which will appear in the run.log output �le.restart (type: boolean, range: fyes,nog)A value of yes will cause an interrupted run recorded in the �le speci�ed by the parameterrestart file to be restarted.restart file (type: character string, range: any)The name of the �le to be used to restart an interrupted run (see restart).run neutral model (type: boolean, range: fyes,nog)If set to yes, a neutral model is run based upon data recorded in the input �le neutral.dat.This �le is generated during a previous run in which record neutral model data is setto yes. For an explanation of neutral models, see Section 5.1.4 (p.111) of [Taylor 99].28



A.3 Terminationlimited run (type: boolean, range: fyes,nog)If yes, run will stop after the number of time slices speci�ed by the parameternumber of timeslices. Otherwise, the run will continue inde�nitely.number of timeslices (type: non-negative integer, range: any)See limited run.A.4 Environmentgrid size (type: positive integer, range: any)Speci�es the number of squares along each direction of the grid.horizontal wrap (type: boolean, range: fyes,nog)Speci�es whether the grid wraps around in the horizontal direction.vertical wrap (type: boolean, range: fyes,nog)Speci�es whether the grid wraps around in the vertical direction.max cells per process (type: non-negative integer, range: any)Speci�es an absolute population ceiling for the number of cells in the environment.population cutback on overcrowding (type: real number, range: any)If the number of cells in the environment exceeds max cells per process, then a propor-tion of the population, speci�ed by population cutback on overcrowding, is killed o�.Cells to be killed are chosen stochastically, but based upon the number of energy tokensthey have stored.overcrowding check period (type: positive integer, range: any)Speci�es the period (expressed as a number of time slice sweeps) between successive checksfor population overcrowding.number of energy tokens per grid pos per sweep(type: non-negative integer, range: any)The average number of energy tokens distributed to each grid position at the beginningof each time slice sweep. The number of tokens distributed to individual squares mayvary, as determined by the parameter energy distribution scheme. This parameteralso determines the number of energy tokens taken away from each grid position at theend of each time slice sweep. See Section 8.max energy tokens per grid pos (type: non-negative integer, range: any)The maximum number of free energy tokens that any square in the environment can store.If additional tokens are deposited on a square which already contains the maximum numberallowed, the extra tokens are lost.env info broadcast period (type: non-negative integer, range: any)Speci�es the period (expressed as a number of time slice sweeps) between broadcasts ofenvironmental information. See Section 6.6.envinfostring decay constant (type: real number, range: any)Governs the decay rate of messages in the environment. See Section 6.5.29



envinfostring decay power (type: real number, range: any)Governs the decay rate of messages in the environment. See Section 6.5.envinfostring lower threshold (type: real number, range: any)Speci�es a threshold intensity for messages in the environment, below which they aredeleted. See Section 6.5.envinfostring initial intensity (type: real number, range: any)Speci�es the intensity assigned to newly created environmental messages. See Section 6.5.max time for msg send reinforcement (type: non-negative integer, range: any)Speci�es the maximum time interval (in number of time slices) in which a cell can reinforcethe intensity of a message it has previously sent using the cwm send instruction. SeeSection 6.5.max time for msg receive reinforcement (type: non-negative integer, range: any)Speci�es the maximum time interval (in number of time slices) in which a cell can extendthe search area of a previously issued rms receive instruction. See Section 4.7.rms receive search area (type: non-negative integer, range: any)Speci�es the number of squares searched for environmental messages upon each executionof the rms receive instruction. See Section 4.7.energy collection scheme (type: enumerated, range: fprivate,sharedg)Speci�es the rules governing the collection of energy tokens by a cell from the environmentand from neighbouring cells. See Section 6.3.energy distribution scheme (type: enumerated, range: fland,sea,mixed,randomg) Speci�eshow energy tokens are distributed across the environment by the Cosmos operating systemat the beginning of each time slice sweep. See Section 6.2.energy distribution random chunk size (type: non-negative integer, range: any)Speci�es how many energy tokens are distributed to each randomly chosen square whenenergy distribution scheme is set to random. See Section 6.2.x delta (type: real number, range: any)Speci�es the energy gradient when energy distribution scheme is set to land (or mixed).See Section 6.2.wave width (type: positive integer, range: any)Speci�es the width of energy wave columns (expressed in number of squares) whenenergy distribution scheme is set to sea (or mixed). See Section 6.2.number of waves (type: positive integer, range: any)Speci�es the number of energy waves, each of width wave width, are �tted across the gridwhen energy distribution scheme is set to sea (or mixed). See Section 6.2.land fraction (type: real number, range: 0.0{1.0)Determines the proportion of the environment to be treated as land when the parameterenergy distribution scheme is set to mixed. An integer number of rows to be treatedas land is calculated by rounding down the product of land fraction and grid size.These land rows are always at the top of the grid, and the sea rows at the bottom.30



A.5 Organismmax cells per organism (type: non-negative integer, range: any)Speci�es the maximum number of cells in a multicellular organism.movement leverage factor (type: non-negative real number, range: any)Partially speci�es how a multicellular organism moves as a result of its constituent cellstrying to move. See Section 6.4.apply friction factor (type: boolean, range: fyes,nog)Determines how organisms move when two or more cells occupy the same square in theenvironment. See Section 6.4.multicellularity penalty factor (type: real number, range: any)Speci�es a cost for multicellularity, in the form of a number of energy tokens removed fromeach cell in a multicellular organism at each time slice, depending on how many other cellsit neighbours within the organism. See Section 4.9.4.A.6 Cellets lower threshold (type: non-negative integer, range: any)Speci�es a threshold number of energy tokens in a cell's Energy Token Store, below whichthe cell dies.ets leak rate per timeslice (type: non-negative integer, range: any)Speci�es the number of energy tokens removed from each cell's Energy Token Store ateach time slice, on top of those removed for executing instructions. See Section 4.5.et value constant (type: real number, range: any)Partially determines the number of instructions a given cell is allowed to execute at eachtime slice. See Section 3.3.et value power (type: real number, range: any)Partially determines the number of instructions a given cell is allowed to execute at eachtime slice. See Section 3.3.default ets level of ancestor (type: non-negative integer, range: any)Speci�es the default number of energy tokens given to each inoculated ancestor programat the start of the run. This default can be overridden if a di�erent number is speci�ed inthe ancestor.ini �le for a user-de�ned ancestor.number of energy tokens per collect (type: non-negative integer, range: any)Speci�es the number of energy tokens that a cell will attempt to collect from the envir-onment for each execution of the et collect instruction. The actual number of energytokens collected depends upon availability. See Section 6.3.max energy tokens per cell (type: non-negative integer, range: any)Speci�es the maximum number of energy tokens that a cell can store in its Energy TokenStore.info string size limit (type: positive integer, range: any)Speci�es the maximum length of any InfoString object in the system. This imposes anupper limit on the size of genomes, environmental messages, etc.31



stack size limit (type: non-negative integer, range: any)Speci�es the capacity (maximum number of items) of the cells' stacks.rms size limit (type: non-negative integer, range: any)Speci�es the capacity (maximum number of messages) of the cells' Received MessageStores.neighbouring genomes readable (type: boolean, range: fyes,nog)Speci�es whether the genomes of neighbouring cells are imported as messages into theReceived Message Store and checked for binding sites when a newly active promoter issearching for a binding site. See Section 4.7.A.7 Mutations and Flawsapply mutations (type: boolean, range: fyes,nog)Speci�es whether mutations are to be operative during the run. If set to no, then the asso-ciated parameters mutation period and mutation application period have no e�ect.mutation period (type: non-negative integer, range: any)Speci�es the expected number of bits within the cells of all the organisms in the populationthat will be una�ected by mutations between successive bits which are a�ected, at eachapplication of the mutation procedure.mutation application period (type: non-negative integer, range: any)Speci�es the period (expressed as a number of time slice sweeps) between successive ap-plications of the mutation procedure.apply flaws (type: boolean, range: fyes,nog)Speci�es whether the 
awed execution of instructions is to be operative during the run. Ifset to no, then the associated parameters default flaw period andflaw period max change per thou have no e�ect.default flaw period (type: non-negative integer, range: any)Speci�es the default 
aw period initially associated with inoculated ancestor programs.This is the expected number of successful executions of instructions by the Cosmos op-erating system between successive 
awed executions. This default can be overridden if adi�erent number is speci�ed in the ancestor.ini �le for a user-de�ned ancestor.flaw period max change per thou (type: non-negative integer, range: any)Speci�es the degree to which a cell's 
aw period may be changed by a single mutation.Expressed in parts per thousand. The 
aw rate may be mutated to any number in therange of its current value plus or minus the speci�ed fraction of that value.A.8 Input and Outputspecies count export period (type: non-negative integer, range: any)Speci�es the period (expressed as a number of time slice sweeps) between successive outputsto the �le concentrations.dat.species count threshold for recording (type: non-negative integer, range: any)Speci�es the minimum number of individuals of a given species (genotype) that must32



coexist in the population before information about that species is written to the �lespecies current.dat.max output file size (type: non-negative integer, range: any)Speci�es the maximum size (in number of bytes) of output �les. When an output �le ex-ceeds this threshold it is closed and compressed, and a new �le (with a di�erent extension)is opened for writing. See Section E.morgue record period (type: non-negative integer, range: any)Speci�es the expected number of deaths of eligible organisms between successive recordingsof information about the death of an eligible organism (i.e. an organism of a genotype thathas already been recorded in the �le species current.dat) into the �le morgue.dat.backup period (type: non-negative integer, range: any)Speci�es the period (expressed as a number of time slice sweeps) between successivebackups of the run being written to the �le autosave.ser.record neutral model data (type: boolean, range: fyes,nog)Speci�es whether data for the run is to be written to the �le neutral.dat for subsequentplayback as a neutral model. See also run neutral model.neutral model data export period (type: non-negative integer, range: any)Speci�es the period (expressed as a number of time slice sweeps) between successive record-ings of information to the �le neutral.dat. Only relevant if the parameterrecord neutral model data is set to yes.group zero length genotypes (type: boolean, range: fyes,nog)Speci�es whether all organisms of zero length are to be regarded as belonging to the samegenotype (i.e. 0AAAA) for the purposes of data collection and analysis.visualisation recording on (type: boolean, range: fyes,nog)Speci�es whether visualisation output �les (`movie' �les) are to be recorded for the run.visualisation record energy only (type: boolean, range: fyes,nog)Speci�es whether only the energy-related visualisation �les will be recorded, or whetherthey all will be. This is only relevant if visualisation recording on is set to yes.visualisation intersample period (type: non-negative integer, range: any)Speci�es the period (expressed as a number of time slice sweeps) between the beginningof recording of successive samples of the visualisation data. This is only relevant if theparameter visualisation recording on is set to yes.visualisation intrasample period (type: non-negative integer, range: any)Speci�es the period (expressed as a number of time slice sweeps) between successive re-cording of visualisation data within a single sample period. This is only relevant if theparameter visualisation recording on is set to yes.visualisation sample size (type: non-negative integer, range: any)Speci�es the number of data points (i.e. the number of recorded time slices) for each samplein the visualisation data. Only relevant if the parameter visualisation recording on isset to yes. 33



B The REPLiCa Instruction SetThe instruction set of the REPLiCa programming language contains 62 instructions in total, aslisted below. The user is able to include and exclude any of these instructions from the availableinstruction set for any particular run of the system, according to the speci�cation of the geneticcode in the input �le genetic code.ini (described in Section E).In the following description of the instructions, RMS stands for Received Message Store, CWMfor Communications Working Memory, and NWM for Nucleus Working Memory. ADRString refersto the string pointed to by ADRStringPointer (mentioned in Section 4.8); this is the InfoStringupon which the adr and mov ic instructions will act. This may be the cell's own genome, or itmay be a message in the cell's Received Message Store. ADRStringPointer can be changed topoint to a di�erent InfoString with the str switch and similar instructions. A register enclosedin square brackets (e.g. [ax]) indicates the contents of the memory location speci�ed by thevalue of that register.Some of the instructions relating to regulators (e.g. reg create), and to searching for bindingsites (e.g. adr), must be immediately followed by a valid binding site speci�cation if they areto operate correctly. A valid speci�cation is a consecutive string of nop instructions (i.e. takenfrom the set fnop 00, nop 01, nop 10, nop 11g).A few instructions involve actions which occur in a particular direction relative to the cellexecuting them (e.g. move, et transport). In these cases, the direction is speci�ed by the low 3bits of the cx register. This gives a number between 0 and 7, which corresponds to the directionsshown in Figure 3(a).� Register Manipulation Operationspush_a ; push ax onto stackpush_c ; push cx onto stackpop_a ; pop stack into axpop_c ; pop stack into cxswap_ab ; ax=bx, bx=axswap_cd ; cx=dx, dx=cxmov_ic ; copy one instruction from ADRString, starting; from address [ax], into cx. The length of the; instruction copied is written to dx. ax += dx.; If ax>length of ADRString, flag=true.clr_f ; flag=falseinc_a ; increment ax (if overflow, flag=true)inc_c ; increment cx (if overflow, flag=true)dec_c ; decrement cx (if underflow, flag=true)add_cd ; cx=cx+dx (if overflow, flag=true)sub_cd ; cx=cx-dx (if underflow, flag=true)sub_ab ; cx=ax-bx (if underflow, flag=true)34



zero_c ; cx=0not_c ; cx=NOT cx (bitwise)and_cd ; cx=cx AND dx (bitwise)or_cd ; cx=cx OR dx (bitwise)shl_c ; shift bits in cx left; (lo bit <- flag, hi bit -> flag)shr_c ; shift bits in cx right; (hi bit <- flag, lo bit -> flag)not_lo_c ; flip low bit of cx� Flow of Control Operationsif_fl ; if (flag=false) increment instruction pointer; otherwise do nothingif_not_fl ; if (flag=true) increment instruction pointer; otherwise do nothingif_z ; if (cx!=0) increment instruction pointer; otherwise do nothingstop ; stop execution and unbind current promoterset_jmp ; point the local jump marker to the next; instructionclr_jmp ; clear the local jump markerjmp ; if local jump marker is set, jump to that; instruction, otherwise do nothing (set flag=true)� Nucleus Working Memorynwm_clear ; Erase the NWM WritableInfoStringnwm_write ; Copy first n bits of cx to the end of the NWM,; where n is given by the low 4 bits of dx.nwm_write_bit ; Copy the first bit of cx to the end of the NWM.nwm_divide ; Create a new single-celled organism by copying; NWM WritableInfoString as the new genome,; splitting the contents of the regulator stores; and Energy Token store, and creating an initially; empty RMS and CWM. The NWM of parent cell is; empty after the division. Child cell is placed; randomly at a free location near the parent (no35



; preferred direction).nwm_split ; Transfer contents of NWM into a new cell which; will become an additional process of the; multicellular organism. Child cell is placed in a; position relative to the parent specified by the; low 3 bits of the cx register. If this location; is already occupied, the nearest free neighbour; is occupied. If all 8 neighbours are occupied,; child cell replaces the parent (parent dies).� (Inter-organism) Communications Working Memorycwm_clear ; Erase the CWM WritableInfoStringcwm_write ; Copy first n bits of cx to the end of the CWM,; where n is given by the low 4 bits of dx.cwm_write_bit ; Copy first bit of cx to the end of the CWM.cwm_send ; Transfer contents of CWM to an; EnvironmentalInfoString at the current grid; position of the cell, with a type given by the; low 4 bits of dx. The msg is given a standard; intensity. This msg replaces any existing msg at; that grid posn with the same msg type. After the; instruction is issued, the CWM is emptied. If; another cwm_send is sent within n time slices of; the last one (and msg type is the same, and CWM; is now empty), the intensity of the existing msg; at that grid pos with msg type=dx is increased; (by a standard amount).� Received Message Storerms_receive ; Receive msg(s) from environment. One execution of; this instruction will search over a catchment; area of 1/8th of a full circle (45 degrees), in a; direction specified by the low 3 bits of the cx; register. The search is for messages of String; type specified by the low 4 bits of the dx; register. Each search initially spreads out from; the cell and covers a fixed number (n) of grid; cells (specified by the parameter; rms_receive_search_area) and all msgs of the; right type are received and added to the end of; the RMS. If another rms_receive is issued for the36



; same String type and same direction within a; fixed number of time slices (specified by the; max_time_for_msg_receive_reinforcement; parameter), the current search continues outwards; (covering n more grid positions).� Energy token collection / transferet_collect ; if (environmental energy token available); pick up n tokens from environment; (n specified by global parameter; number_of_energy_tokens_per_collect); else; flag=trueet_transport ; if ((number of tokens in store >=; ets_lower_threshold); &&; (there is a cell belonging to the same; organism in the direction indicated by the; lower 3 bits of cx)); send n tokens to neighbouring cell in; direction indicated (n specified by; the global parameter; number_of_energy_tokens_per_collect); else; flag=trueet_check ; cx=current level of energy token store� Regulators[the following instructions all work for both promoters andrepressors. To work correctly, they must both be followed by two ormore nop's. The first nop specifies whether a promoter or arepressor is being referred to (nop_00 and nop_01 indicate apromoter, and nop_10 and nop_11 a repressor). The second andsubsequent nop's specify the binding pattern of the regulator.]reg_destroy ; if ((valid binding site specification follows; instruction) &&; (a matching regulator exists in the store)); remove one of the matching regulators; else; flag=truereg_transport ; if ((valid binding site specification follows; instruction) &&37



; (a matching regulator exists in the store) &&; (there is a cell belonging to the same; organism in the direction indicated by the; lower 3 bits of cx)); send one matching regulator to neighbour; cell indicated (removing it from store in; first cell).; else; flag=truereg_create ; if two or more nop's follow, create a regulator; from the specified bit pattern and place it in; the appropriate regulator store. If the first nop; is a nop_00 or a nop_01, create a promoter with; bit pattern specified by the second and; subsequent nop's, and place it at the bottom of; the list in the Promoter Store. Otherwise (if the; first nop is a nop_10 or a nop_11), create a; repressor with bit pattern specified by the; second and subsequent nop's, and place it in the; Repressor Store, checking for possible binding; sites on the Genome (and other eligible; InfoStrings in the Received Message Store).� NOPs / Binding Site Speci�cationnop_00 ; symbols for specifying binding sites (used innop_01 ; creating promoters and repressors, and bynop_10 ; adr instructions)nop_11 ;� Searching for Binding Sitesadr ; if ((valid binding site specification follows; instruction) &&; (a matching binding site is found on the; ADRString)); ax = address of the memory location; immediately succeeding the; nearest matching template; else; flag=trueadrf ; as adr, but only searches forwards from current; position of read-head on ADRStringadrb ; as adr, but only searches backwards from current38



; position of read-head on ADRStringstr_switch ; if (there exists an InfoString with type=low 4; bits of dx); ADRString=first matching String found; else; flag=truestr_switchf ; as str_switch, but only searches forwards from; current ADRStringstr_switchb ; as str_switch, but only searches backwards from; current ADRStringstr_host ; ADRString=cell's genome Stringstr_latest ; ADRString=last String in RMS liststr_next ; ADRString=next String in RMS list. If at end,; loop back to the cell's genome String. If on the; genome String, move to first String in RMS.str_previous ; ADRString=Previous String (i.e. just the; reverse of the action of str_next)str_remove ; if (there exists an InfoString with type=low 4; bits of dx in the RMS); remove first matching string found; else; flag=true� Cell Movement Operationsmove ; Attempt to move cell (and whole organism) in the; direction specified by the low 3 bits of the cx; register. For multicellular organisms, each cell; that issues a move instruction during a time; slice is actually casting a vote for the desired; direction of movement. The overall effect of this; is given by a formula described elsewhere.migrate ; Attempt to move cell relative to other cells in; the organism in a direction specified by the low; 3 bits of the cx register. If direction if full,; nearest free direction is taken. If no free; direction is available, migration has no effect; (flag=true). Note that migration for a single; celled organism has the same effect as a move39



; instruction.� Killing the current process (cell)kill ; Kill current cell. Any energy tokens in the; cell's Energy Token Store are added to the; current grid position's store. Note that if cell; was part of a multicellular organism, cell death; may lead to the organism physically breaking up; into two or more distinct organisms.C Prede�ned Ancestor ProgramsC.1 Ancestor A1This self-reproducing program operates by copying itself one instruction at a time into theNucleus Working Memory. It is assumed that the program starts at memory location zero (asis usually the case); no attempt is made to look for a binding pattern to calculate the startaddress. Similarly, copying continues until an execution of the instruction mov ic sets the 
ag,which indicates that the end of the program has been reached. When copying is complete, thenwm divide instruction is issued to produce the o�spring. A promoter is provided that willattach itself to the beginning of the program to initiate execution. A new promoter of the sametype must be produced by the program itself, to be passed on to its o�spring. The programlisting is as follows:1-2 101100111000 Start marked with a specific binding pattern3 et collect Collect some energy4 nwm clear5 zero c6 push c7 pop a ax=0 (i.e. points to start of program)8 set jmp9 et collect10 clr f11 mov ic Main loop:12 if not fl Copy instructions one at a time into13 nwm write the Nucleus Working Memory, and check14 if fl whether end of program has been reached15 clr jmp16 jmp17 reg create Create a new regulator:18 nop 00 The regulator will be a promoter19 nop 1020 nop 11 These nop's specify a promoter21 nop 00 that match the binding pattern22 nop 11 at the beginning of this program23 nop 1024 nop 0025 nwm dividepromoter 101100111000 Initial promoter40



C.2 Ancestor A2This self-reproducing program works in a similar fashion to ancestor A1. The di�erence is thatit explicitly searches for its beginning and end positions by looking for appropriate binding sites,rather than assuming that copying should start from memory address zero and continue untilexecution of the instruction mov ic sets the 
ag. The program listing is as follows:1-2 101100111000 Start marked with a specific binding pattern3 et collect4 et collect5 nwm clear6 adrb7 nop 108 nop 11 Search for binding pattern9 nop 00 at start of program10 nop 1111 nop 1012 nop 0013 push a14 pop c15 et collect16 dec c17 dec c18 dec c19 dec c We now have to subtract the20 dec c length of the binding pattern21 dec c (12 bits) to get the address22 dec c of the actual start of the23 dec c program24 dec c25 dec c26 dec c27 dec c28 push c29 pop a30 swap ab31 et collect32 adrf33 nop 0134 nop 00 Search for binding pattern35 nop 11 at end of program36 nop 0037 nop 0138 nop 1139 swap ab40 set jmp41 et collect42 et collect43 clr f44 mov ic45 push c46 swap cd47 push c48 swap ab 41



49 sub ab50 swap ab51 pop c52 swap cd53 pop c54 if not fl55 nwm write56 if fl57 clr jmp58 jmp59 et collect60 reg create61 nop 0062 nop 1063 nop 1164 nop 0065 nop 1166 nop 1067 nop 0068 nwm divide69 stop70-71 010011000111 End marked with a specific binding patternpromoter 101100111000D Running CosmosCosmos is started with the following command:cosmos [OutputDirectory] [InputDirectory]OutputDirectory and InputDirectory are optional arguments to tell the program whereto place output �les and where to search for input �les. If only one directory is speci�ed, itis taken to be the output directory. The system is con�gured via the input �les params.ini,genetic code.ini and ancestor.ini, described in Section E. If either the input or outputdirectory is unspeci�ed when the program is started, the current working directory will be usedby default.E Format of Input and Output FilesThe formats of the various input and output �les are described below. With the exception ofthe automatically generated backup �le (autosave.ser), all �les are in ASCII format.E.1 Input FilesWhen a Cosmos run commences, the program will search for the three �les listed below. Cosmoswill look for these �les in the current working directory, unless a di�erent input directory is spe-ci�ed as an argument when the program is started. The �les genetic code.ini and params.iniare always required. The �le ancestor.ini is only required if the parameter ancestor is set touser defined.
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E.1.1 The Genetic Code (genetic code.ini)The mapping between the bit string representation of instructions in a cell's genome and theinstructions listed in Section B is de�ned in the �le genetic code.ini. The format of the �leis shown in Figure 7. 000000 instruction 1000001 instruction 2000010 instruction 3:111111 instruction 64Figure 7: Format of the genetic code.ini �le.Note that the �le must contain a mapping for each of the 64 six-bit codons (although theydo not have to be listed in any particular order). It is permitted for multiple codons to pointto the same instruction; if this is the case, fewer than 64 instructions are therefore available fororganisms to use.E.1.2 Parameter speci�cation (params.ini)Non-default parameter values may be speci�ed in this �le. The format is shown in Figure 8. Theallowable section names are: inoculation, startinfo, termination, environment, organism,cell, mutation and io. These correspond to the groupings of parameters in Section A. Theparameter names and allowable values are as listed in Section A. The �le params.ini may alsocontain blank lines, and comments (lines beginning with the % character).[section name 1]parameter name 1=value 1parameter name 2=value 2:parameter name N1=value N1[section name 2]parameter name 1=value 1parameter name 2=value 2:parameter name N2=value N2:[section name N]parameter name 1=value 1parameter name 2=value 2:parameter name N3=value N3Figure 8: Format of the params.ini �le.
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E.1.3 User-de�ned ancestor programs (ancestor.ini)If the parameter ancestor is set to user defined, Cosmos looks in the ancestor.ini �le fora description of the ancestor(s) to be used to inoculate the environment at the beginning of therun. The format of this �le is shown in Figure 9.ancestor 1 description###ancestor 2 description###ancestor N descriptionFigure 9: Format of the ancestor.ini �le.Any number of di�erent ancestors may be speci�ed, each separated by the line ###. Ifmultiple ancestors are de�ned in this �le, they are introduced alternately into the environmentduring inoculation, until the speci�ed total number of organisms has been reached (see thedescription of the parameters number and placement in Section A). Each ancestor descriptionis a consecutive sequence of lines, each of which may be any one of the following:1. A blank line.2. A comment (commencing with the % character).3. An explicit bit string to be directly added to the ancestor's genome. Speci�ed by a lineconsisting of a string composed of the characters 0 and 1. Useful for specifying bindingpatterns.4. An instruction (as listed in Section B). This has the e�ect of writing the bit stringcorresponding to the instruction (as de�ned in the �le genetic code.ini) to the ancestor'sgenome.5. An instruction enclosed in square brackets []. This has the e�ect of determining a se-quence of nop instructions (i.e. taken from the set nop 00, nop 01, nop 10, and nop 11)corresponding to the bit string representation of the speci�ed instruction. The bit stringrepresentation of this string of nops is then written to the ancestor's genome. Usefulfor writing code that will produce regulators which will bind to a particular sequence ofinstructions (without requiring the programmer to know the bit string representation ofthese instructions).6. A promoter to be added to the ancestor's promoter store. Speci�ed by a line beginning withp: followed by a string composed of the characters 0 and 1 representing the promoter'sbit string.7. A repressor to be added to the ancestor's repressor store. Speci�ed in same way as pro-moter, but with line starting r:.8. An initial energy level for the ancestor. Speci�ed by a line beginning with e: followed bya number to represent the desired energy level.9. An initial 
aw period for the ancestor. Speci�ed by a line beginning with f: followed bya number to represent the desired 
aw period.44



A valid ancestor description consists of at least one instruction and one promoter. If no ini-tial energy level or 
aw period are speci�ed, the default values de�ned by the parametersdefault ets level of ancestor and default flaw period, respectively, are used. If mul-tiple ancestors are de�ned, they are distributed alternately across the environment, as describedin Section A under the description of the placement parameter.E.2 Output FilesAs the run proceeds, Cosmos writes data to various output �les. These are stored in the currentworking directory unless a di�erent output directory is speci�ed as an argument when theprogram is started. As Cosmos runs can last for an inde�nitely long time (if no limit is set onthe length of the run by the parameters limited run and number of timeslices), the output�les could also potentially grow inde�nitely large. In order to keep the �les at a manageable size,Cosmos breaks down the �les described below (except for run.log, species current.dat andautosave.ser) in the following way: each �lename is given an additional extension, which isinitially .AA (e.g. concentrations.dat.AA).When the size of the output �le exceeds a threshold(set by the parameter max output file size), Cosmos closes the �le, compresses it (using gzip),and opens a new �le with an incremented extension name (i.e. the second �le will have theextension .AB). Writing continues in this new �le until that too reaches the threshold size, andthe compression procedure is repeated.E.2.1 General Information About Run (run.log)The �le run.log contains the following information about the run:1. Cosmos version number.2. Run comment (speci�ed by the parameter comment).3. Time run commenced.4. A listing of the genetic code (as speci�ed in the �le genetic code.ini). Includes a list ofinstructions that have multiple codon mappings, and a list of instructions which have nocodon mappings.5. A listing of the ancestor(s) being used. Includes the bit string representation and corres-ponding instructions, together with the initial promoters, repressors, energy level and 
awperiod, and the ancestor's ID number.6. A full list of system parameters together with their values.7. The number used to seed the random number generator. If the run has been re-started,the new seed is also listed, together with the time slice at which the run re-commenced.8. The time at which the run �nished, together with the time slice at which it stopped, anda comment to indicate why the run terminated.All except the �nal item on the above list are written to the run.log �le at the beginningof the run. The �nal item is written when the run terminates.
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E.2.2 Species Concentrations (concentrations.dat)At regular intervals determined by the parameter species count export period, summary in-formation about the species currently in the population is written to the �le concentrations.dat.This �le has a two-line header which is required by the actiview program.21 Subsequent linesof the �le are of the format:TimeSliceNumber: Species1-ID Species1-Number;Species2-ID Species2-Number; ...;SpeciesN-ID SpeciesN-Number;where SpeciesN-Number is the number of individuals of genotype SpeciesN-ID in the pop-ulation at time slice TimeSliceNumber.E.2.3 Species Details (species current.dat, species extinct.dat)Whenever a new organism is born, a check is made to see whether the number of individualsof that genotype currently in the population exceeds a threshold de�ned by the parameterspecies count threshold for recording. If this threshold is exceeded, and if informationabout the species has not previously been recorded in the �le species current.dat, then a lineis appended to the �le containing information about the species. The format of the line is:SpeciesID ParentSpeciesID TimeOfFirstOccurrence InitialReadingFrame Genomewhere ParentSpeciesID is the ID of the species from which the present species is descended;TimeOfFirstOccurrence is the time slice in which the �rst organism of the species was born;InitialReadingFrame is the frame in which the genome of the �rst organism of the speciesis being translated, expressed as a number in the range 0{5 (because codons are 6 bits long)indicating an o�set from the beginning of the genome; and Genome is a full listing of the species'genome (written as a bit string).When a species which has been recorded in species current.dat becomes extinct, therecord of that species is removed from this �le, and transferred to species extinct.dat. Whenthis happens, two extra �elds of information are appended to the line describing the species:TimeOfExtinction and FinalReadingFrame (the reading frame in which the last organism ofthe species was being translated).E.2.4 Information on Individual Organisms (morgue.dat)When an individual organism dies, if it is of a species which has already been recorded in the�le species current.dat, then information about the organism is considered for recording inthe �le morgue.dat. To restrict the size of this �le, eligible organisms only have a 1 in N chanceof being recorded in it, where N is determined by the parameter morgue record period. Eachline of the �le is of the format:21Actiview is a program developed by Emile Snyder and Mark Bedau at Reed College in the USA, to producevarious summary statistics and graphs depicting the evolutionary activity of the run. These are described inSection 5.1 (pp.105-110) of [Taylor 99].
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TimeSliceNumber SpeciesID-Numeric SpeciesID-Alpha TimeOfBirth LastReadingFrameNumberFaithfulOffspring NumberUnfaithfulOfspring TimeOfFirstFaithfulOffspringTimeOfSecondFaithfulOffspring FlawRateAtBirth MaximumCellsInOrganismForeignCodeExecutionwhere SpeciesID-Numeric and SpeciesID-Alpha are the numeric and alpha componentsof the SpeciesID of the organism (which are split to make subsequent extraction of organ-ism genome length data easier); NumberFaithfulOffspring is the number of faithful o�springthat the organism gave birth to (and NumberUnfaithfulOfspring has a similar meaning re-lating to unfaithful o�spring); TimeOfFirstFaithfulOffspring is the time slice at whichthe organism gave birth to its �rst faithful o�spring, or 0 if it did not achieve this (andTimeOfSecondFaithfulOffspring has a similar meaning relating to the second faithful o�-spring); MaximumCellsInOrganism is the maximum number of cells that the organism was com-posed of at any stage of its life; and ForeignCodeExecution is 1 if the organism ever executedany code from its Received Message Store during its lifetime, and 0 otherwise.E.2.5 Phylogenetic Information (phylogeny.dat)Information about the phylogeny (ancestry) of all species that arise during a run is recorded inthe �le phylogeny.dat. Each line of this �le is of the format:SpeciesID,ParentSpeciesIDwhere ParentSpeciesID (the immediate ancestor of SpeciesID) is set to 0 for the record ofa species that was used to inoculate the system at the start of the run. The entire phylogeny ofany species can therefore be reconstructed from the data in this �le, right back to an ancestorused to inoculate the system at the start of the run; the Perl script phyl will print the fullphylogenetic tree for a species passed in as an argument.E.2.6 Neutral Model Data (neutral.dat)If the parameter record neutral model data is set to yes, Cosmos will record data about therun in the �le neutral.dat. The period between successive updates to this �le is set by theparameter neutral model data export period. The data in neutral.dat can subsequently beused to run a neutral shadow of the run (see the description of the parameter run neutral modelin Section A). The �rst two lines of the �le are a header: the �rst line records the size of theenvironment (as speci�ed by the parameter grid size), the number of organisms with whichthe system was inoculated at the start of the run (as speci�ed by the parameter number), andthe maximum number of cells allowed in a multicellular organism (as speci�ed by the parametermax cells per organism); and the second line is a separator. Each subsequent line of the �leis of the format:
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TimeSliceNumber NewSpecies OrganismBirths CellSplitInfo CellDeathInfoOrganismFissionInfo OrganismMovementInfowhere NewSpecies is the number of new species that have appeared in the population in theperiod since the previous line of the �le was recorded; OrganismBirths is the number of neworganisms that were born in that period; CellSplitInfo shows the number of organisms whichgrew in size (by executing the instruction nwm split), followed by a list of the size (in termsof number of cells|before the cell division) of each such organism; CellDeathInfo shows thenumber of cells that died, followed by a list of the size (before the cell death) of the organism towhich each one belonged; OrganismFissionInfo shows the number of organisms which �ssioned(due to cell death), followed, for each one, by the number of fragments (new organisms) thatresulted from the �ssion, and a list of the size of each new organism; and the �nal block ofinformation, OrganismMovementInfo, shows the number of organisms which moved, followed,for each one, by a triplet of numbers indicating the size of the organism, and the x and ycomponents of its movement.E.2.7 Backup File (autosave.ser)Cosmos records its state at regular intervals during a run, so that in the event of a run beingstopped prematurely, it can be restarted from the last saved position. The time period betweensaves is set by the parameter backup period. The data is recorded to the �le autosave.ser.Should a run need to be restarted from this �le, it should be placed in the input directory, andthe system started with the parameter restart set to yes. The format of the saved data issomewhat complicated, but the user should not need to worry about this. Occasionally, however,it may be desirable to extract data from this �le, as it contains a complete snapshot of the runat the given time. If this is necessary, the format can be ascertained by studying the Serialisemethod of the class CM Process, in the source �le Process.cc.E.2.8 Visualisation Output FilesIf the parameter visualisation recording on is set to yes, various kinds of data are writtento �les for subsequent playback as `movies' of the run. Each �le contains data about the spatialdistribution of a particular aspect of the system, at a number of times during the run.There are seven di�erent aspects of the system that can be recorded in this way. These are:1. The ages of the cells in the population, expressed as the number of time slices that haveelapsed since their birth (recorded in the �le v age.dat).2. The number of energy tokens that each cell has in its Energy Token Store (recorded in the�le v cell energy.dat).3. A 
ag to indicate whether each cell has executed any foreign code from its ReceivedMessage Store during its lifetime (recorded in the �le v comms.dat).4. The number of energy tokens stored at each square in the environment (recorded in the�le v env energy.dat).5. The SpeciesID of each cell, which also indicates the length of each cell's genome (recordedin the �le v id.dat). 48



6. The size of each organism, in terms of number of cells (recorded in the �le v orgsize.dat).7. The direction of movement (if any) of each organism in the previous time slice (recordedin the �le v move.dat).Normally, if visualisation recording on is set to yes, then all of these �les get written.However, if visualisation record energy only is additionally set to yes rather than no, thenonly the �les v cell energy.dat and v env energy.dat are written.The �les are updated during the run at intervals determined by the system parametersvisualisation intersample period, visualisation intrasample period and visualisation sample size. Speci�cally, data is recorded for a number of sample periods during therun. The number of time slices between successive samples is determined by visualisationintersample period. Each sample consists of data for a number of time slices, determined byvisualisation sample size. The number of time slices between successive records within asample is determined by the parameter visualisation intrasample period.At each time slice when a record is to be made, a batch of data is written to each �le.This data is written in grid size+1 rows of grid size+1 columns. The elements of the �nalrow, and of the �nal column, are all -1. This extra row and column is added purely to easythe process of producing a graphical display from the data using the MATLAB visualisationsoftware package. The remaining elements of the data correspond to individual squares of theenvironment. For the �le v env energy.dat, each element represents the number of energytokens available at the corresponding square. For the other �les, the element represents dataassociated with any cell(s) that are present at the corresponding square. If no cells are present,the element is given the value -1. If a single cell is present, the element is given the appropriatevalue (according to which �le is being written) for that cell. If multiple cells are present, theelement contains the appropriate values for each cell, separated by colons (:s).An extra �le, v idx.dat, is also written along with these other visualisation �les. At eachtime slice when data is written to the other �les, the corresponding time slice number is writtento v idx.dat.F Implementation DetailsThe core of the Cosmos system and REPLiCa programming language is implemented as anobject-oriented system in ANSI standard C++ (with heavy use of the C++ Standard TemplateLibrary). It is compiled with the GNU C++ complier in a Unix (Solaris) environment, butshould be portable to other compilers and platforms.Cosmos uses the bsd random() pseudo-random number generator (RNG), which uses thelinear feedback shift register generation technique. bsd random() does not su�er from some ofthe de�ciencies of many versions of the standard random() RNG.
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