Studying Evolution with Self-Replicating Computer Programs

Tim Taylor and John Hallam
Department of Artificial Intelligence, University of Edinburgh
5 Forrest Hill, Edinburgh EH1 2QL, U.K.
{timt, john}@dai.ed.ac.uk

Abstract

A critical discussion is presented on the use
of self-replicating program systems as tools for
the formulation of generalised theories of evolu-
tion. Results generated by such systems must be
treated with caution, but, if used properly, they
can offer us unprecedented opportunities for em-
pirical, comparative studies. A new system called
Cosmos is introduced, which is based upon Ray’s
Tierra [15]. The major difference between Cos-
mos and previous systems is that individual self-
replicating programs in Cosmos are modelled (in
a very simplified fashion) on cellular organisms.
Previous systems have generally used simpler self-
replicators. The hope is that Cosmos may be
better able to address questions concerning the
sudden emergence of complex multicellular biolo-
gical organisms during the Cambrian explosion.
Results of initial exploratory runs are presented,
which are somewhat different to those of similar
runs on Tierra. These differences were expec-
ted, and indicate the sensitivity of such systems
to the precise details of the language in which
the self-replicating programs are written. With
the strengths and weaknesses of the methodology
in mind, some directions for future research with
Cosmos are discussed.

1 Self-Replicating Program Systems as a
Methodology for Studying Evolution

Within the last decade, computers have become power-
ful and affordable enough to enable a number of re-
search groups to study the evolution of life in a new way.
Rather than following the traditional approach of trying
to capture properties of whole populations in mathem-
atical models, the new approach models a large number
of individual self-replicating entities which are competing
against, each other for resources required for replication.
This is achieved by creating a computer which can run
a large number of self-replicating programs in parallel'.

n practice, a virtual computer is created (i.e. implemented
in software), with parallelism simulated by time-slicing between

Tom Ray pioneered this approach with his Tierra sys-
tem [15, 16]. Since then, a number of other systems
have also been developed, including Avida, developed
by Chris Adami and Titus Brown [2], Computer Zoo,
written by Jakob Skipper [18], and John Koza’s system
of self-replicating LISP-like programs [8].

Using such a methodology to study evolutionary sys-
tems is attractive for a number of reasons. For example,
as the self-replicators are being modelled individually
rather than as populations, the simulation respects the
fact that a gene does not work in isolation. Rather, it
is part of a large ensemble of genes which must all work
together with some degree of cooperation in order for the
individual organism which carries them to replicate and
thus propagate the genes collectively [6]. Only through
explicitly modelling individual organisms may we begin
to understand the complex interactions between genes
and organisms, and how these interactions affect the dy-
namics of the evolutionary process. In addition, by in-
cluding an analogy to the process of development of mul-
ticellular organisms from single cells?, this methodology
provides a tool for investigating the interplay between
such generative processes and an organism’s genes—a
question which is currently the subject of considerable
debate (e.g. [6, 7, 14]).

In fact, systems which use self-replicating programs
are not merely simulations. As the programs replic-
ate themselves (with genetic novelty being introduced
by mutations and the flawed execution of instructions),
rather than being selected and copied according to an
externally defined fitness function (as in genetic al-
gorithms), they recreate the conditions necessary for
evolution. Such systems can therefore be called synthetic
life or artificial life?, rather than just simulations.

Every computer-based self-replicating program system
therefore provides a new instance of evolution. This

the programs. Similar approaches are also being employed to in-
vestigate related subjects such as the spontaneous emergence of
self-replicating programs (e.g. [8, 13]), although it is unclear what
this work can tell us about the emergence of biological life.

2For example, by modelling organisms as parallel programs
which can dynamically create additional processes.

3The term ‘artificial life’ is now used in a wide variety of situ-
ations, but we would argue that only systems based upon self
replicating entities are deserving of the term in the strong sense.

leads the way to a field of empirical study we have previ-
ously been unable to explore, namely comparative evol-
ution. This refers both to comparisons between differ-
ent instances of evolutionary systems (including biolo-
gical evolution), and also to comparisons within a single
system. The latter involves investigating the sensitiv-
ity of the system to initial conditions, parameters, etc.
by running it many times over under slightly different
conditions—a strategy which is not, of course, possible
in the case of biological evolution.

When studying a population of organisms which are
the end-product of an evolutionary process, we generally
want to disentangle the relative contributions of three
factors to the final state of the system:

1. Features due to chance events/historical accident.

2. Features due to the particular components of the sys-
tem and to the laws governing their interaction.

3. Features which may be general to a wide class of evol-
utionary systems.

Through empirical studies of comparative evolution,
the hope is that we can begin to investigate each of these
factors, and move towards a truly general theory of ge-
netic auto-adaptive systems (to use a term suggested in
[1] to cover both biological evolution and self-replicating
program systems).

When studying the performance of a genetic auto-
adaptive system it is important to consider the relative
contributions of each of the three factors. For example,
runs on Tierra often result in the evolution of ‘parasite’
programs which cannot replicate by themselves, but util-
ise the code of neighbouring programs to perform this
task [15]. At first glance, this is an exciting and un-
expected result. However, when Tierra’s mechanisms
for template-driven branching are considered, where the
flow of control in a program can jump just as easily to a
point on a nearby program as it can to somewhere on the
same program, the fact that parasites emerge becomes
a little less surprising. The fact that we observe para-
sitic behaviour in nature and in Tierra might lead one to
suppose that this may be a common feature of genetic
auto-adaptive systems. However, on closer inspection it
would appear that the emergence of parasites in Tierra
owes much to the particular design of the language.

Parasites and symbiosis also emerged in Computer
700, but there too, Skipper came to the conclusion that
“the concept of remote execution seems to be essential
to the evolution [of parasitic behaviour]” [18].

A number of researchers have voiced their concern
about the extent to which self-replicating program sys-
tems can really help us in our understanding of biolo-
gical evolution. Mathematical biologist Robert May has
said that, although he finds this work stimulating, he has
“slight reservations about the extent to which the conclu-
sions are perhaps inadvertently built into the program”,

as well as doubts about the robustness of the findings*.
These are justified concerns, but they can be partially
allayed by using carefully designed comparative studies
[3]. In this way, by manipulating individual factors and
noting effects on measured variables, the relative contri-
butions of factors to the behaviour of the system can be
investigated.

Indeed, several within-system comparative studies
have been published for Avida (e.g. [1]) and Tierra
[16]°. However, just looking at differences within a sys-
tem may not be enough to satisfy critics of this meth-
odology. There will always be questions of how close
an analogy is being drawn to biology, and of what stage
of biological evolution the system is trying to recreate.
Problems arise in these areas because there is a conflict
between trying to model the physics and chemistry of
the real world, and creating an efficient and “natural”
representation for the logical/informational world of the
computer. The complexity of the physical/chemical nat-
ural world must usually be greatly simplified in a com-
putational model, and many aspects of this complexity
are ignored completely.

The extent to which such questions matter depends
upon whether one is really trying to model biological
life, or rather trying to create artificial life in an appro-
priate form for the digital medium. To the extent that
the former is true, it must be asked how important are
the simplifications and omissions of the model to the per-
formance of the system.

These issues again highlight the need for comparative
studies, not only within systems, but also between them.
The greater variety of genetic auto-adaptive systems we
have access to, the more we can learn about how im-
portant the particular components of a system, and the
laws governing their interactions, are to the behaviour of
that system. Unfortunately, because of the impossib-
ility of exactly modelling the complexities of physical
and chemical systems, it is still the case that, at least
in the near future, self-replicating computer systems will
be more similar to each other than they are to biolo-
gical evolution. Therefore, we may still not be able to
learn much about biological evolution at this stage using
such a methodology. However, this should not prevent
us from exploring these systems, as gross simplifications
must be made in the initial stages of any branch of sci-
entific enquiry.

2 Motivations for Building a New Ge-
netic Auto-Adaptive System

There are a number of reasons why the new system has
been created. The first is simply because, as just men-

4From [4], Chapter 8.

5This study looked at the effects of using each of four different
instruction sets. A more informative experiment would consider
the effects of individual instructions within an instruction set.

tioned, the more such systems we have, the more we can
learn about evolution. This is especially true if the sys-
tems are somewhat different to each other.

A second reason was to attempt to pitch the analogy
at a somewhat later stage of biological evolution. One of
the original aims of Tierra was

“to parallel the second major event in the his-
tory of life, the origin of diversity [the Cambrian
explosion, 600 million years ago]. Rather than
attempting to create prebiotic conditions from
which life may emerge, this approach involves en-
gineering over the early history of life to design
complex evolvable organisms, and then attempt-
ing to create the conditions that will set off a
spontaneous evolutionary process of increasing di-
versity and complexity of organisms. This work
represents a first step in this direction, creating
an artificial world which may roughly parallel the
RNA world of self-replicating molecules (still fall-
ing far short of the Cambrian explosion)” Tom
Ray [15].

The system described in this paper is called Cosmos®.
It has been designed to model (in a very simplified fash-
ion) some of the features of cellular organisms, such as
gene regulation, an evolvable mapping between genotype
and phenotype, energy storage, inter-cellular communic-
ation and inter-organism communication. The hope is
that Cosmos may be better able to address questions
concerning the sudden emergence of complex multicel-
lular organisms during the Cambrian explosion, in the
face of selective pressures which should normally force
evolving systems in the direction of smaller and simpler
organisms. This is a question that has interested ecolo-
gists for a long time.

It is a commonly held belief that once evolution hits
upon multicellularity, the emergence of complex organ-
isms is an inevitable result. We may therefore wish to
ask questions such as: How easy is it for evolution to hit
upon multicellularity? What are the initial advantages
for organisms that adopt multicellularity over those that
do not? What conditions are required for multicellular
organisms to emerge?

On the other hand, mathematical models of eco-
systems suggest that, in general, increased complexity
makes for diminished community stability [11]. As there
are many cases where Nature appears to maintain eco-
system stability despite the complexity of the ecosystem,
there is therefore also a need to “elucidate the devious
strategies which make for stability in enduring natural
systems” ([11] p.174).

The creation of the Cosmos system not only required
various new features to be added to the basic Tierra

6Cosmos is an acronym for “COmpetitive Self-replicating Mul-
ticellular Organisms in Software”.

design, but also required a number of existing features to
be modified to fit the new analogy. The main innovations
of Cosmos are described in Section 3, but the reasons for
changing existing features of Tierra are as follows:

e It has already been said that programs in Tierra can
directly execute the code of neighbouring programs.
This could be argued to be analogous to certain pro-
cesses in a (hypothetical) system of self-replicating
RNA molecules. However, as Cosmos programs are
supposed to be analogous to cellular organisms, they
should not be able to directly execute the genetic code
of other organisms. There is clearly still a need to al-
low organisms in Cosmos some method of communic-
ation and/or interaction, but this should preferably
be somewhat more indirect.

e In Tierra, CPU time is the analogy for energy in a
biological system. At each timeslice, every program
is allowed to execute a certain number of instructions,
depending only on the size of the program being ex-
ecuted. In a sense, the programs are getting energy
‘for free’, in that there is no notion of a program
having to capture and store energy, and then convert
the energy into useful work (executing an instruc-
tion). Cellular biological organisms certainly do have
to concern themselves with such issues, so the idea
of energy (CPU time) as a commodity which must
be captured, stored and converted to useful work is
incorporated into the design of Cosmos.

e As a consequence of Tierran programs being given
energy for free, a somewhat arbitrary mechanism has
to be introduced to decide which programs get killed
off when the available memory in the system starts to
fill up. The ‘reaper queue’ performs this function—
programs are placed at the bottom of the queue when
they are born, and programs at the top of the queue
get killed off when more memory is required. Pro-
grams can move up the queue if they cause error con-
ditions when run, and they can move down the queue
if they successfully execute difficult combinations of
instructions, “but, in general, the probability of death
increases with age” [15]. The reaper queue effectively
imposes an upper limit on the lifespan of programs.
While at first glance this may seem like a sensible
mechanism, there is no a priori reason for assuming
that there should be a fixed maximum lifespan for all
members of an evolving system. Indeed, in nature
we see great diversity in the duration of organism
life-cycles. The typical lifespan for members of a spe-
cies is presumably a compromise between factors such
as an individual’s longevity, its fecundity, and the
evolvability of the lineage. In Cosmos, the chance of
an organism dying depends upon how much energy
it has stored within it (as explained in Section 3).

This mechanism imposes no fundamental limits on
the lifespan of organisms.

This final point raises a more fundamental question.
In any population of self-replicating entities which are
competing against each other for resources required for
replication (e.g. energy and materials), there are three
factors which determine the rate at which any particular
type of replicator will spread throughout the population
[6]. These are the life-span or longevity of the replic-
ator, the rate at which it replicates (its fecundity), and
the number of errors in makes while producing copies of
itself (its copy-fidelity). In Tierra, evolution can change
the fecundity of a program by making it shorter or longer
(a shorter program can be copied quicker than a longer
one, all other things being equal). However, the reaper
queue mechanism means that programs have minimal
control over their longevity. Tierran programs also have
no control over their copy-fidelity, as this is determined
by global parameters of the system. The design of Tierra
therefore restricts programs to evolve along the ‘fecund-
ity axis’, with longevity and copy-fidelity being more or
less fixed. Cosmos has been designed to allow organisms
to also evolve along these other two axes.

There is an additional advantage in requiring programs
to capture energy (potential CPU time) from the envir-
onment and store it for future use: each program be-
comes a potential resource of energy for other programs.
There is therefore the potential for predator programs to
evolve which prey on the energy resources of other pro-
grams, and for an exploitative coevolutionary arms race
to emerge [12]. If such a process occurs, organisms on
a number of different trophic levels might emerge in the
system. Such conditions are undoubtedly of great im-
portance in the evolution of complex organisms. In fact,
it has even been proposed [19] that the Cambrian explo-
sion was caused by the appearance of the first organisms
that ate other organisms (heterotrophs).

3 Novel Features of the Cosmos System

The Cosmos system is explained in detail in [20]. It
is written in an object-oriented style that allows it to
be easily modified and expanded. The general design
philosophy has been to make the system as flexible as
possible and to try to model as many features of cellu-
lar organisms and their physical/chemical environment
as possible, at least in a very abstract way, so as not to
constrain the system’s evolutionary potential. In addi-
tion, care was taken to ensure that all features of the
system could be implemented in a computationally effi-
cient way.

The general mode of operation is the same as Tierra,
in that it simulates the parallel execution of a large num-
ber of self-replicating programs written in a low level lan-
guage that has been designed to be robust under muta-

tion. Variety between programs is introduced by two
methods: a mutation operator, whereby any bit of any
program in the system can be flipped (with a constant,
low probability), and flawed execution of instructions,
whereby an instruction, which would normally be ex-
ecuted once, might instead by execute twice or not at all
(the rate at which this happens is again very low, but is
an evolvable property of an individual program).

Cosmos uses a different instruction set to Tierra. Most
Tierran instructions have equivalents in Cosmos, but ad-
ditional instructions are included to provide the different
functionality described below (and in Section 2).

As already mentioned, a primary motivation for build-
ing Cosmos was to address questions concerning the sud-
den emergence of complex multicellular organisms in the
Cambrian period. In Cosmos, parallel programs are con-
sidered as the analogy of multicellular biological organ-
isms. The same analogy has been used for studying mul-
ticellularity in Tierra [17, 21, 22]. (Using this analogy,
the process of development from a fertilised egg cell to an
adult organism is equivalent to the formation of a paral-
lel computer program from an initially serial program by
the dynamic creation of parallel processes as the program
runs.)

Therefore, Cosmos has been designed with mechan-
isms to allow for parallel programs with inter-process
communication and analogies for genetic regulation and
energy transfer between cells. The main features which
differ from some or all previous systems are as follows:

3.1 Cellularity

Each program within Cosmos is an Organism object. An
organism contains one or more Cell objects. Each Cell
object represents a single process, so that an Organism
with one Cell is a serial program, and an Organism with
multiple Cells is a parallel program. A Cell contains a bit
string—the Genome, which gets translated to the execut-
able code of the process. A Cell also contains a number
of other objects, including: Nucleus Working Memory
for writing a copy of the Genome for replication; Com-
munications Working Memory for composing arbitrary
messages; a Regulator Store containing promoters and
repressors which dictate which sections of the Genome
are translated; a buffer for receiving incoming messages;
an ‘Energy Token’ Store; four 16 bit registers and a stack.

When a Cell issues a divide command, the contents of
the Nucleus Working Memory are written to the Genome
of a new Cell object in a new Organism object. Most of
the other structures of the new Cell are initially empty,
but half of the parent Energy Token Store is transferred
to the child, as is half of the contents of the Regulator
Store.

The process by which a Cell dynamically creates a
parallel process (another Cell) within the same Organism
is exactly the same, except it is initiated by a split

command rather than a divide.

Other points to mention are that when a Cell splits,
it can specify a preferred location for its offspring in re-
lation to itself (which is important for intercellular gene
control and energy transfer, explained later), and, once
created, a Cell can migrate to a new location within
the Organism. There is also an experimental parameter
which defines the energy cost of multicellularity (i.e. at
each timeslice, a certain number of energy tokens are de-
ducted from each Cell in a multicellular Organism, pro-
portional to how many neighbouring Cells it touches).

It is worth highlighting a few consequences of this
design. As mentioned previously, some experiments have
already been conducted on evolving parallel programs in
Tierra [17, 21, 22]. (This work will be referred to as
Parallel Tierra.) Parallel Tierra uses a shared memory
approach to parallelism, and, although it is theoretically
capable of supporting MIMD (Multiple Instruction, Mul-
tiple Data) programs (i.e. differentiated multicellular or-
ganisms), it has so far only demonstrated the evolution
of SIMD (Single Instruction, Multiple Data) programs.
In contrast, Cosmos uses a distributed memory model of
parallelism, and the regulator system that it employs (ex-
plained later) should promote the emergence of MIMD
programs. In addition, unlike in Parallel Tierra, each cell
within a multicellular organism in Cosmos actually con-
tains a separate copy of the genome. Although this may
appear to be unnecessary, it has a number of possible
advantages. For example, the process of cell splitting
(organism growth by the creation of parallel processes)
is virtually identical to that of cell division (creating
a new organism). This means that it is far easier for
evolution to experiment with multicellular organisms, as
little change is required from the basic self-replicating al-
gorithm to produce an organism that grows rather than
divides. Cosmos is therefore better suited for looking
at the initial emergence of multicellular organisms from
unicellular ones”, and the conditions under which suc-
cessively more complex multicellular organisms might
evolve. Any satisfactory account of the evolution of mul-
ticellular organisms must proceed in a stepwise manner
such as this. As Richard Dawkins notes in [5], “[a] com-
plex developmental sequence has to have evolved from an
earlier developmental sequence which was slightly less
complex” (p.258), so “[tlhe Darwinian must begin by
seeking immediate benefits to genes promoting this kind
of life cycle, at the expense of their alleles” (p.263). An-
other consequence of the design is that all cells within an
organism can potentially divide to produce a new organ-
ism. In other words, they are all potentially germ-line
cells*—no a priori assumptions are made as to which
cells are germ-line and which are not.

"In contrast, in the work reported on Parallel Tierra, the initial
ancestor program has itself been parallel rather than serial.

8Unlike in Parallel Tierra where only one process is capable of
producing a new organism.

3.2 Communication

Cosmos uses a very flexible method for allowing pro-
grams to broadcast and receive messages to and from
other programs. Basically, any cell can compose an arbit-
rary bit string in its Communications Working Memory,
and then transmit this message to the environment.
Other cells (which could belong to the same organism
or a different one) can then issue a command to pick up
specified types of environmental messages which are be-
ing transmitted from cells in their locality. This mech-
anism is an attempt to allow programs to develop ar-
bitrary channels of communication in much the same
way that biological organisms can communicate arbit-
rary messages using media such as light and sound.

There is a further twist to this mechanism—if certain
conditions are matched for a received message, it will
be treated as equivalent to the host code (i.e. it may
be executed like a section of the program). In this way,
genetic material may also be transferred between pro-
grams. Again, the general design philosophy has been
to allow the evolutionary process some of the freedoms
enjoyed by biological organisms and to prevent it from
being unduly constrained. The analogy to the biolo-
gical case is tenuous, but the fact that we are working
with a logical/information medium, rather than a phys-
ical/chemical medium, must be respected. Whatever the
details of the design, the important point is to provide
that organisms with some forms of communication, as we
are only now beginning to realise the great importance
of communication in biological organisms even as simple
as bacteria [9].

3.3 A Q%D Environment

One of the problems that has been observed with the pro-
cess of evolution in Tierra is that it suffers from prema-
ture convergence due to global interactions between cells
[2]. Adami and Brown sought to overcome this problem
in Avida by giving each of the cells a location on a two
dimensional toroidal grid. Cells can only interact with
other cells occupying nearby grid positions, thereby slow-
ing down the rate of propagation of evolutionary changes
throughout the total population and promoting hetero-
geneity (biodiversity). In Cosmos, programs live on a
2D grid, where each cell occupies a specific grid posi-
tion. Each organism is flat—that is, each of its cells must
be located at a different position on the grid. Within
a multicellular organism, individual cells can only pass
regulators and energy tokens to neighbouring cells with
which they are in physical contact. Cells from different
organisms can, however, share a grid position and thus
compete for energy. The system is therefore Q%D, but
is still computationally easy to manage. Organisms can
move around the grid if their cells execute the appropri-
ate instructions.

As well as promoting biodiversity, this design means
that the organisms live in a Euclidean space which is at
least partially comparable to the 3D space of biological
organisms.

3.4 Energy Tokens

At the beginning of each timeslice, a number of energy
tokens are distributed across the environment. Each cell
must issue an et_collect command to pick up tokens from
its current location. These tokens get added to the cell’s
Energy Token Store. When it is that cell’s turn to ex-
ecute some instructions, energy tokens are deducted from
its store for each instruction it executes. If the level of
the store falls below a certain threshold, the cell dies.

There is a (high) limit on the total number of cells
that may exist on a single Cosmos system. If this limit is
reached, memory is released by killing off cells stochastic-
ally, where the chance that a cell is killed is inversely pro-
portional to the level of its Energy Token Store. How-
ever, the total number of cells in the system can also be
effectively controlled via the quantity of energy tokens
that are pumped into the environment at each timeslice.
By reducing this quantity, it is possible to reach a situ-
ation where this global culling is never required, because
the rate at which cells are dying through lack of energy
equals the rate at which new cells are being produced.

It could be argued that this mechanism is to some
extent equivalent to the ‘reaper queue’ of Tierra—that
‘illegal instructions’ are just being replaced by ‘amount
of energy’ as the factor which governs how long a cell
survives. However, the current method has the advant-
ages of not imposing a maximum age limit on cells, and
of allowing the possibility of the development of trophic
levels within the population of organisms, as mentioned
in Section 2.

An additional feature concerning energy tokens is that,
in a multicellular organism, a cell can send energy tokens
to neighbouring cells with which it is in physical contact.
This feature was included to allow for the possibility of
the evolution of organisms which possess specialised en-
ergy collecting cells which distribute energy to the rest
of the organism.

3.5 Indirect Mapping from Genotype to Pro-
gram Instructions

The genome of a cell in Cosmos is literally represented
as a string of bits, which gets translated into instructions
using a ‘genetic code’ stored in the cell. In other words,
in contrast to any other system of this type, there is an
indirect mapping between genotype and phenotype®.

It has been argued that the mapping from genotype
to phenotype determines the phenotypic variability of a

9Where ‘phenotype’ in this case refers to the executable
program.

species, and therefore its evolvability [23]. Cosmos can be
used to investigate such issues. For example, it is easy
to test the effect of different mapping schemes on the
behaviour of the system. Also, it can easily be configured
so that each cell owns its own map of the genetic code,
which can therefore evolve along with the rest of the cell.

3.6 Regulation of the Genome

The flow of control when reading a genome is gov-
erned by the presence of Regulators. These come in two
forms, promoters and repressors. Both types are associ-
ated with a short bit string which determines to which
parts of a genome they may bind. Promoters define the
sites at which translation of the genome may begin, and
repressors define sites at which translation stops. There
are two ways that regulators can enter (or leave) a cell—
they can either be produced (or destroyed) by the cell
itself through the execution of specific commands in the
instruction set, or, in the case of multicellular organisms,
they can be passed from one cell to a neighbouring cell
within the organism. In this way, a complex regulatory
network can emerge. This mechanism was designed in
an attempt to loosely model gene regulation in biological
cells. It is hoped that such a system might promote the
emergence of cell differentiation via gene control in mul-
ticellular organisms. Another consequence of this mech-
anism is that, as the genome and the regulators work at
the level of individual bits, different promoters are not
restricted to binding to the genome in the same read-
ing frame. In other words, if, for example, one promoter
binds to the genome five bit positions down from a second
promoter, and each instruction is encoded in six bits,
the first bit of the first instruction translated by the first
promoter is actually the last bit of the first instruction
translated by the second. The promoters are working in
different reading frames, and will translate the genome
into completely different programs. This can also hap-
pen in biological systems, where it has been observed
that some species actually encode multiple instructions
on the same section of the genome by using shifted read-
ing frames (e.g. [10] p.144).

4 Observations from Preliminary Runs

In this section, some observations from the very first ex-
ploratory runs of Cosmos are described. The purpose of
these was to quickly ascertain the basic behaviour of the
evolving programs, and to check that the system worked
correctly over a number of long runs, before commencing
work on more carefully designed, more specific, compar-
ative experiments.

Three long runs have been conducted, each using sim-
ilar parameter settings, but with different schedules of
energy token distribution across the environment. The
parameter settings for the runs are listing in the Ap-

RUN A - ALL ORGANISMS RUNB - ALL ORGANISMS

RUN A - DATA FOR SELF-REPLICATING CELLS ONLY RUN 8 - DATA FOR SELF-REPLICATING CELLS ONLY

TN A

i

LENGTH OF GENOME (NUMBER OF BITS)
§

LENGTH OF GENOME (NUMBER OF BITS)

T8 8 W
ety

7 8 8 W o 1 2 3
x10°

0 T 2 3 4 5 6 i 5 s
TIVESLICE TIMESLICE

Figure 1: Number of Organisms plotted against Time in
Run A (left) and Run B (right). See text for details.

pendix. In the light of the discussion in Section 1 it
is stressed that the scientific significance of these ob-
servations, by themselves, is minimal, as they are not
carefully constructed comparative experiments. Most
importantly, each experiment has so far only been run
once, so conclusions cannot be drawn as to the general-
ity of the observed results across a wide range of random
number seeds.

For this reason, the runs are not analysed in great
detail. However, they are described primarily to demon-
strate that the behaviour of the system is somewhat dif-
ferent to Tierra. This was expected, and emphasises the
fact that an important factor governing the behaviour
of these systems is the specific design of the language in
which the programs are written, and the rules governing
how they interact with their environment.

In these runs, a grid size of 50 x 50 was used. The
grid was initially inoculated with 900 identical ancestor
programs, evenly distributed across an area of 30 x 30
positions in the centre of the grid. The ancestors per-
form more or less the same actions as does the Tierran
ancestor described in [15]—the general procedure is to
first calculate (by template matching) the start and end
points of the genome in memory; then to copy instruc-
tions one at a time from the beginning of the genome to
the end into the Nucleus Working Memory (this section
of the program will be referred to as the ‘copy loop’); and
finally to issue a divide instruction to create a new organ-
ism object with a genome constructed from the contents
of the Nucleus Working Memory. At each timeslice, each
cell in the population was allowed to execute 10 instruc-
tions (if it had enough Energy Tokens). Each run lasted
for about 1 million timeslices!?.

Comparing the results of the runs across a number
of measures, Runs B and C gave qualitatively similar
results, but these were fairly different to the results of

10As there were, on average, about 300-400 cells in the popu-
lation throughout the runs (Figure 1), the system therefore ex-
ecuted about (300 or 400)x10x1000000, or 3-4 billion individual
instructions, during the run. This took approximately 100 hours
of processor time on a Sun Sparc 4 workstation.

] (] 1 2
x10°

]

4 5 5
TIMESLICE a0

4 5 5
TIMESLICE

Figure 2: Length of Genomes plotted against Time in
Run A (left) and Run B (right). See text for details.

RUN A~ DATA FOR CELLS WITH 100% COPY-FIDELITY ONLY RUN B - DATA FOR CELLS WITH 100% COPY-FIDELITY ONLY

250,

REPLICATION PERIOD OF CELL (NUMBER OF TIMESLICES)

REPLICATION PERIOD OF CELL (NUMBER OF TIMESLICES)

4 5 6 4 5 6
TIMESLICE TIMESLICE

x10°

Figure 3: Cell Replication Periods plotted against Time
in Run A (left) and Run B (right). See text for details.

Run A. Because of the similarity between B and C, the
following discussion will describe Runs A and B only.
In none of these initial runs did multicellular organisms
evolve in significant, sustained numbers. For this reason
(i.e. the majority of organisms were single-celled), the
terms ‘organism’ and ‘cell’ are used more or less inter-
changeably in the following discussion.

The runs only differed in one respect (apart from the
random number seed)—the way in which energy tokens
were distributed around the environment at the start of
each timeslice!!.

In Run A the distribution was even, i.e. every grid po-
sition was given the same number of energy tokens. Ten
tokens were deposited at each position at each timeslice,
which could enable a cell to execute ten instructions.
Therefore, as long as there is only one cell at a given
position, that cell can obtain sufficient energy from the
environment to survive indefinitely, without having to
move around in search of more energy tokens.

In Run B, the grid was divided into five bands of 10
x 50 positions for the purposes of energy token distri-
bution. Grid positions in the leftmost band received 8
energy tokens per timeslice, and each band to the right of
this received one more token per timeslice (so the middle

11 Also, Runs A and C lasted for 1 million timeslices, whereas
Run B, running on a slower machine, was terminated after 880,000
timeslices.

band received 10, and the rightmost band received 12).
The total number of energy tokens deposited in the en-
vironment at each timeslice was the same as in Run A,
but in Run B grid positions in the two leftmost bands re-
ceived fewer tokens than average, and those to the right
received more than average. The particular distribution
used meant that 60% of the grid positions received suffi-
cient (or more than sufficient) energy tokens to support
a single cell, but 40% received insufficient energy.

Figure 1 shows how the number of cells in the system
varied over time. Although the upper limit on the num-
ber of cells in the system was set at 2500, most of the
900 ancestral programs died off almost immediately in
both runs. This was due to overcrowding, as each grid
position can only support a single cell. When a cell di-
vides, its offspring is placed at a random nearby grid po-
sition, so the environment can only support populations
where there is some space between individual organisms
(at least in the case where these organisms are immob-
ile). In Run A, the population size stabilised at around
450 organisms (at least until timeslice 700,000), and in
Run B it stabilised at around 260-270 organisms. (The
fact that Run B supported about 60% of the number
of organisms supported by Run A is a consequence of
the different energy token distributions, mentioned pre-
viously.)

Figure 2 shows how the length of genomes in the
population varies over time!?. (The length of the ini-
tial ancestor program is 396 bits, i.e. 66 6-bit instruc-
tions.) One difference between the behaviour of Cosmos
in these runs and that reported for runs on other sys-
tems [15, 16, 22, 21, 18] is the fact that in Cosmos, at
each timeslice, all of the genomes are of roughly the same
size—there are no parasites or symbiotes of much shorter
length (as are often observed in the other systems). This
result was, of course, expected, as Cosmos does not allow
cells to execute the code of other cells.

There are a few more points of interest about Figure 2.
In both runs, over the first 50,000 to 100,000 timeslices,
there was a tendency for program length to increase, and
there is considerable diversity in the lengths of programs
in the population at any given time. This increase in pro-
gram length is accompanied by a decrease in fecundity—
the programs are replicating at a slower rate (Figure 3).
This is a surprising result, as, recalling the discussion
at the end of Section 2, one would ordinarily expect pro-
grams in such a system to evolve in the direction of higher
fecundity (at least, this is the general behaviour observed
in runs of Tierra). A closer look at how the programs
changed during this period reveals that extra et_collect
instructions were being inserted into the programs’ copy

121n this figure, at each timeslice data is only included for self-
replicating cells, i.e. those which had made at least one faithful
copy of themselves by that time. In this figure, and also in Figure
3, the darkness of the plot at any given point corresponds to the
number of cells taking that ordinate value at that timeslice.

loops. The decrease in a program’s overall fitness due to
the increase in program length that results from the ad-
dition of extra instructions is evidently more than com-
pensated by the increase in fitness due to the collection
of more energy from the environment (the more stored
energy a program has, the less likely it is to die'?).

However, at around about 100,000 timeslices (slightly
earlier in Run A, later in Run C), there is an abrupt
change to organisms of much shorter length. This occurs
when a mutation creates a program without many of the
initial instructions which are concerned with the calcula-
tion of the size of the genome, which actually turn out to
be redundant due to various details of the memory ad-
dressing scheme used and the particular actions of some
of the instructions. Once this transition has occurred,
the length of the programs remains fairly stable through-
out the rest of the run. Although this general pattern
was observed in all three runs, the actual lengths of pro-
grams after the transition were slightly different in each
case—in Run A the programs settled in the range of
roughly 310-320 bits, in Run B it was 330-350 bits, and
in Run C, 270-290 bits. It is also known that it is possible
to write considerably shorter self-replicating programs (a
self-replicator of length 126 bits has been hand-written
by one of the authors [TJT]), yet in each of these runs
there was no gradual decrease in length once the initial
transition was made. This observation emphasises the
fact that some fairly significant details of the results (in
this case the lengths of the programs at the end of the
run) depend upon chance events (in this case the particu-
lar mutation that caused the initial transition to shorter
programs). The population certainly does not march in-
evitably to some sort of global optimum state.

One more point about Run A (left side of Figures 2
and 3) is that, roughly between timeslices 700,000 and
850,000, the population completely lacked any individual
organisms that were able to make exact copies of them-
selves. A closer look at the programs that were around
during this period shows that they generally retained
most of the code required for self-replication, but with
minor errors that prevented them from replicating cor-
rectly. Importantly, however, they still generally con-
tained a loop (the copy loop inherited from their an-
cestors) with many et_collect instructions within it, so
the programs generally had high energy levels and were
therefore unlikely to be killed off. The total number of
organisms in the population was slightly depressed dur-
ing this period (Figure 1), but not by a great amount.
At around timeslice 850,000 a mutation occurred which
reintroduced faithful self-replicators into the population.

Figure 3 shows how the length of time between suc-
cessive replications of a cell (i.e. the speed with which

13The time of death of individual organisms was not recorded
for these runs, so graphs of organism longevity against time (which
might be expected to rise if this explanation is correct) cannot be
plotted. This will be corrected in future runs.

a cell replicates) varies over time!'*. Whereas in Run A
(left side of Figure 3) the replication period is fairly static
after 100,000 timeslices throughout the rest of the run,
in Run B (right side of Figure 3) and in Run C, there
was a fairly gradual increase in replication period (i.e. a
decrease in fecundity) over the run. This occurred des-
pite the fact, as mentioned earlier, that the fecundity
of organisms might be expected to increase over time
in systems such as this, and also despite the fact that
the length of the programs remained fairly constant dur-
ing the run. Again, inspection of the programs over
this period shows that there was a gradual accumula-
tion of et_collect instructions within the copy loop. As
the length of the programs remained fairly constant, it
appears that most of these new et_collect’s came about
by the mutation of existing (apparently redundant) in-
structions in the programs. There was a small trend
for an increase in the number of instructions contained
in the copy loop over time (the new instructions gener-
ally being even more et_collect’s), which accounts for the
gradual increase in replication period.

5 Conclusions and Directions for Future
Research

The results of these initial exploratory runs of the system
demonstrate, if nothing else, that Cosmos behaves some-
what differently to systems such as Tierra and Avida.
This was expected, because of the differences in design
highlighted in Sections 2 and 3. The results also provide
encouraging signs that Cosmos is capable of displaying
diverse behaviours under different conditions, and that
in many cases the programs do not seem to be simply
evolving in the direction of increased fecundity (as is the
usual observation in other systems of this type). Much of
the interesting behaviour of the results reported seems to
be due to the fact that energy is a commodity to be col-
lected and used. As the organisms are responsible for en-
ergy collection, they have some control over their expec-
ted lifespan (their longevity), which is certainly also the
case in the evolution of biological organisms. Programs
in Cosmos also have some control over their copy-fidelity,
as the rate at which flaws occur as a program runs is also
an evolvable parameter of each program. Future experi-
ments on Cosmos will look in detail at the general nature
of the relationship between replicator longevity, fecund-
ity and copy-fidelity in evolving populations.

A series of more detailed and careful experiments with
Cosmos is shortly to begin. One important question to
consider right at the start is how much of the behaviour
of the system is due to chance events. In other words,

141n this figure, at each timeslice data is only included for self-
replicating cells with 100% copy-fidelity (i.e. those that had only
ever produced ezact copies of themselves). This restriction is due
to the way in which the replication rate figures were collected, and
will be corrected in future runs.

how much do results vary when running the system a
number of times under exactly the same conditions (ex-
cept for a different random number seed)? It is vital to
have some idea of this variability in order to know how
many trials should be conducted for each set of para-
meter settings in future experiments. The role of chance
events in determining the behaviour of the system may
have been particularly influential in the runs reported in
this paper, as the fairly small population sizes will have
promoted genetic drift. Tests will be run to gauge the
magnitude of this effect.

Experimentation will then concentrate on the investig-
ation of a number of theories which have been proposed
to explain the initial emergence of multicellular biological
organisms. In addition to Stanley’s theory [19] of the
evolution of heterotrophs as the prime cause of the Cam-
brian explosion, developmental biologist Lewis Wolpert
has suggested that multicellular organisms might origin-
ally have emerged in conditions where food was sparsely
distributed in the environment!'®. When no food was
available, a multicellular organism would be able to be-
gin eating its own cells to survive until environmental
food was available again. Cosmos may be easily con-
figured to test such a scenario.

Experiments are also planned to investigate the sensit-
ivity of the system to the genotype-phenotype mapping,
for reasons mentioned in Section 3. At present, there are
61 instructions in the Cosmos instruction set, and these
are encoded using 6 bits (giving a total of 64 different
possibilities). There is therefore virtually no redundancy
in the encoding, in contrast to the biological genetic code
which encodes 20 amino acids with 64 possible codons.
In one set of experiments, a reduced instruction set will
be investigated, which consists of just 21 primary units
which can be encoded on the genome. The full function-
ality of the existing system is maintained by allowing the
primary units to form compound instructions. This is
somewhat analogous to the way in which biological gen-
omes encode just 20 amino acids, which, when decoded,
are then assembled into a vast array of useful proteins.

Some exploratory runs were conducted with a much
shorter ancestor than was used in the experiments re-
ported in Section 4. The outcome of these runs was that
very little evolution happened at all. It appears to be
necessary to inoculate the system with an ancestor that
contains a certain amount of redundancy (as was appar-
ently contained in the longer ancestor used in Section 4).
Indeed, this was also found to be true in Avida, for which
it has been reported that “redundancy has emerged as a
necessary requirement for successful evolution” [1]. This
may be even more true of Cosmos, as it attempts to
model cellular organisms at the verge of a Cambrian ex-

15This theory, which he named ‘cannibalistic altruism’, was dis-
cussed during a recent talk by Wolpert at the Royal Museum of
Scotland, Edinburgh, on 20 February 1997.

plosion of complexity and diversity. It could be that
supplying the ancestral cells with just a self-replication
algorithm in the genome is not enough. Many of the
necessary genetic regulatory networks involved in the
Cambrian explosion of biological organisms conceivably
already existed before the Cambrian period, so that the
rapid evolution of the organisms was triggered by com-
ing across ways to regulate these networks and adjusting
the degree of pleiotropy between their phenotypic effects.
To facilitate the emergence of complex organisms in Cos-
mos, it may be that the ancestral genome not only has to
be large, but must also be composed of a number of dis-
crete functional units. Ideas such as these are discussed
in a general context by Wagner and Altenberg in [23].

Throughout this paper, the issue of the importance of
remote execution of code for the evolution of parasites
has been raised a number of times. Experiments will be
conducted on Cosmos in which cells can read and execute
the genomes of other cells in the system. These condi-
tions would be expected to encourage the evolution of
parasites (i.e. to replicate the results observed in Tierra,
Avida and Computer Zoo).

As a closing remark, the Cosmos system has been de-
signed and developed over the course of a year or so.
When re-reading Ray’s original description of Tierra [15]
recently, it was of interest to note that in the final sec-
tion, “Extending the Model”, Ray suggests a number of
ways in which Tierra could be extended. These include

1. Making instructions expensive.
2. Modifying the way CPU time is allocated.
3. Separation of the genotype from the phenotype.

The incorporation of each of these features in Cosmos
came about through largely independent lines of thought
(Ray’s suggestions having been initially overlooked), but
it is satisfying to note that there is some agreement on
how to extend such systems.

Acknowledgements

Tim Taylor would like to thank Tom Ray and Kurt Thearling for
their comments on the system as it was being developed. He grate-
fully acknowledges support from EPSRC grant number 95306471.
The facilities used for this work were provided by the University
of Edinburgh.

References

[1] C Adami. Learning and complexity in genetic auto-adaptive
systems. Physica D, 80(1-2):154-170, 1995.

[2] C Adami and CT Brown. Evolutionary learning in the 2D
artificial life system ‘Avida’. In R Brooks and P Maes, editors,
Artificial Life IV, pages 377-381. The MIT Press, 1994.

[3] PR Cohen. Empirical Methods for Artificial Intelligence. MIT
Press, 1995.

[4] P Coveney and R Highfield. Frontiers of Complexity: The
Search for Order in a Chaotic World. Faber and Faber, 1995.

[5] R Dawkins. The Eztended Phenotype. WH Freeman, Oxford,
1982.

[6] R Dawkins. The Selfish Gene. Oxford University Press, Ox-
ford, 2nd edition, 1989.

[7] BC Goodwin. How the Leopard Changed its Spots: The Evol-
ution of Complexity. Weidenfeld and Nicolson, London, 1994.

[8] JR Koza. Artificial life: Spontaneous emergence of self-
replicating and evolutionary self-improving computer pro-
grams. In C Langton, editor, Artificial Life III, pages 225—
262. Addison-Wesley, 1994.

[9] R Losick and D Kaiser. Why and how bacteria communicate.
Scientific American, 276(2):52-57, February 1997.

[10] REF Matthews. Plant Virology. Academic Press, San Diego,
CA, 3rd edition, 1991.

[11] RM May. Stability and Complezity in Model Ecosystems.
Princeton University Press, 2nd edition, 1974.

[12] J Maynard Smith. Evolutionary Genetics. Oxford University
Press, 1989.

[13] AN Pargellis. The spontaneous generation of digital ‘life’.
Physica D, 91:86-96, 1996.

[14] RA Raff. The Shape of Life: Genes, Development and the
Evolution of Animal Form. University of Chicago Press, 1997.

[15] TS Ray. An approach to the synthesis of life. In Langton,
Taylor, Farmer, and Rasmussen, editors, Artificial Life II,
pages 371-408. Addison-Wesley, Redwood City, CA, 1991.

[16] TS Ray. Evolution, complexity, entropy and artificial reality.
Physica D, 75:239-263, 1994.

[17] TS Ray. An evolutionary approach to synthetic biology: Zen
and the art of creating life. Artificial Life, 1(2):195-226, 1994.

[18] J Skipper. The computer zoo—evolution in a box. In
FJ Varela and P Bourgine, editors, Toward a Practice of
Autonomous Systems: Proceedings of the First Furopean
Conference on Artificial Life, pages 355—-364, Cambridge,
MA, 1992. MIT Press.

[19] SM Stanley. An ecological theory for the sudden origin of
multicellular life in the late Precambrian. Proc. Nat. Acad.
Sei., 70:1486-1489, 1973.

[20] TJ Taylor. The COSMOS artificial life system. Technical re-
port, Department of Artificial Intelligence, University of Ed-
inburgh. In Preparation.

[21] K Thearling. Evolution, entropy and parallel computation.
In W Porod, editor, Proceedings of the Workshop on Physics
and Computation (PhysComp94), Los Alamitos, November
1994. IEEE Press.

[22] K Thearling and TS Ray. Evolving multi-cellular artificial
life. In R Brooks and P Maes, editors, Artificial Life IV,
pages 283-288. The MIT Press, 1994.

(23] GP Wagner and I Altenberg. Complex adaptations and the
evolution of evolvability. Evolution, 50(3):967-976, 1996.

Appendix - Parameter Settings for Runs
Reported in Section 4

Size of Grid = 50 x 50, Max Cells Per Process = 2500, Max
Cells Per Org = 16, Ancestor type: LA1, Inoculation scheme:
30 x 30, Overlap Type = Overlap, Distribution Type = [Runs
A&B:Land, Run C:Mixed], Distribution Max Delta = [Run
A:0.0, Runs B&C:0.2], Energy Sharing Type = Shared, Apply
Flaws = true, Default Flaw Rate = 10, Mutation rate = 1 in
100000 per 5 timeslices, MulticellularityPenaltyFactor = 1.0, En-
ergyTokenStoreLowerThreshold = 1, NumOfEnergyToksPerGrid-
PosPerSweep = 10, NumOfEnergyToksPerCollect = 10, MaxEn-
ergyTokensPerCell = 500, MaxEnergyTokensPerGridPos = 200,
NumOfInstructionsPerTimeSlice = 10.

