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Abstract

The role of contingency (random events) in an arti-
ficial evolutionary system is investigated by running
the system a number of times under exactly the same
conditions except for the seed used to initialize the
random number generator at the beginning of each
run. Twelve different measures were used to track the
course of evolution in each run, and “activity wave
diagrams” were also produced (Bedau & Brown 1997).
The results of 19 runs are presented and analyzed. The
performance of every run was compared with each of
the others using a non-parametric test (a randomiza-
tion version of the paired-sample t test). When com-
paring absolute values of the measures between the
runs, some significant differences were found. How-
ever, looking at the difference in values between ad-
jacent sample points for a run, no run was signific-
antly different to any other for any of the measures.
This suggests that the general behaviour is the same
in all runs, but the accumulation of differences res-
ults in significantly different outcomes. The results
lead us to propose a rule of thumb for future experi-
ments with the system: to check whether the outcome
of any particular experiment is robust to contingency
in the evolutionary process, at least nine runs should be
conducted using different seeds for the random number
generator, to be confident of seeing a variety of results.
The results are likely to be applicable to other A-Life
platforms of self-replicating computer programs, but
at this stage can probably tell us little about the role
of contingency in biological evolution.

Introduction

There is much debate in the field of evolutionary bio-
logy over the role of contingency (“historical acci-
dents”) in determining the course of evolution (see, for
example, (Gould 1989), and, for a flavour of the ensu-
ing debate, (Ridley 1993; Gould 1993; McShea 1993)).
If evolution were to be re-run on Earth, starting from
the same initial conditions and proceeding for another
4 billion years, encountering the same sorts of per-
turbations from the physical environment that it en-
countered the first time around, what sort of a world

would exist today? Would homo sapiens evolve again,
or might life not even make the transition from proka-
ryotic to eukaryotic cells, or maybe not even reach the
cellular stage at all? What, in other words, would hap-
pen if “the tape were played twice”?

The same question arises when considering artificial
evolutionary systems, where we have the advantage of
being able to “replay” evolution under experimental
control. Indeed, in considering the performance of any
evolutionary system, we generally wish to disentangle
the relative influence of three factors: (1) contingency,
(2) performance due to the particular design of the
system, and (3) performance which may be general to
a wide class of evolutionary systems (Taylor & Hallam
1997). However, considering the importance of these
questions, very little has been published to date on the
role of contingency in artificial systems. Fontana and
Buss have done some excellent work on the subject,
choosing to focus on self-maintaining organizations in
an artificial chemistry, rather than presupposing the
existence of self-replicating entities (Fontana & Buss
1994b; 1994a). Their results suggest that a number
of generic organizational features may be expected to
emerge in any comparable system.

Fontana and Buss have not, as yet, witnessed the
emergence of high-level self-reproducing entities in
their work (and that was not their primary goal).
There do, however, exist a growing number of A-
Life systems which presuppose the existence of self-
replicators (e.g. Ray’s Tierra (Ray 1991), Adami et
al.’s Avida (Adami & Brown 1994), Skipper’s Com-
puter Zoo (Skipper 1992), and our own platform, Cos-
mos (Taylor & Hallam 1997; Taylor 1997)). Most pub-
lications relating to these systems mention in passing
that the results being presented were typical of a large
number of runs, but details are rarely given, and, to
our knowledge, no systematic study of the role of con-
tingency in such systems has yet been published. One
factor that may have contributed to this omission is
the difficulty of dealing sensibly with the huge amounts



of data that such simulations can produce, which can
make it difficult to usefully compare one run with an-
other. However, Bedau et al. have recently been de-
veloping a number of techniques for visualizing evolu-
tionary activity, and have also proposed some quant-
itative measures of evolution (Bedau & Packard 1991;
Bedau et al. 1997; Bedau & Brown 1997). These ana-
lysis tools provide some fairly straightforward ways of
comparing the results of a number of evolutionary runs,
both qualitatively and quantitatively.

The purpose of this paper is twofold: (1) to report an
experiment that runs an artificial life system a number
of times, varying just the random number seed between
runs, in order to compare how each run evolves and
therefore get some idea of the role of contingency in the
system; and (2) to use a variety of measures and visual-
ization techniques to compare the runs, and hopefully
to ascertain which are the most useful measures for
such comparisons. The paper ends with a discussion
of the results, including the extent to which they may
be generalized to other evolutionary systems.

The A-Life System

Cosmos is a Tierra-like platform that supports a pop-
ulation of self-replicating computer programs living
in an environment. Its design differs from Tierra
in a number of ways, the most relevant of which,
for the present discussion, are described below. For
more details about Cosmos, refer to (Taylor 1997;
Taylor & Hallam 1997), or look on the worldwide
web at http://www.dai.ed.ac.uk/daidb/people/

homes/timt/research.html. The source code is avail-
able from the authors.

Spatial Organization For the runs reported in
this paper, the environment was configured as a two-
dimensional toroidal grid. There is evidence that such
spatial organization, where interactions between pro-
grams are restricted to a program’s local neighbour-
hood, can promote heterogeneity and prevent prema-
ture convergence (Adami & Brown 1994).

Energy Collection At each time step, energy is
distributed throughout the grid. Programs must col-
lect energy from the environment in order to execute
their instructions. If a program’s internal energy level
falls below a certain threshold, it dies. In addition,
a maximum population size can be specified for the
system. If this is the case, when the population max-
imum is reached, a fraction of the programs are killed
off stochastically, but those with low internal energy
have a higher probability of being killed. Programs
therefore have to concern themselves with energy col-
lection as well as reproduction, and thus have some

degree of control over their own lifespans (i.e. those
that collect more energy are less likely to be killed).

Communication Unlike in Tierra, programs in Cos-
mos can not directly read the code of other programs.
However, any program can compose an arbitrary mes-
sage (a string of bits) and transmit it to the local en-
vironment, and any program can issue instructions to
receive such messages from the environment and inter-
pret them how it wishes. However, in the experiments
reported here, such communication did not evolve, so
the programs generally had fewer ecological interac-
tions than, for example, Tierran parasites that execute
the code of other programs.

Mutations and Flaws As a run proceeds, variation
may begin to appear amongst the programs in the en-
vironment, caused by the action of two different mech-
anisms: (1) Mutations can affect any program, by the
random flipping of one or more bits in the program’s
code or associated structures. The mutation rate is a
system-wide parameter, and does not vary throughout
the run; (2) Flaws. While a program in running, a
flaw may occur in its execution. If this happens, the
instruction which was about to be executed will, with
equal probability, either be executed twice consecut-
ively, or not at all. The rate at which flaws occur is
determined by a parameter owned by each individual
program. Being a part of the program, it is therefore
possible for the flaw rate to evolve over time (by being
changed by mutations) in a lineage of individuals.

On a technical note, as this paper is concerned with
the role of chance events in evolution, the choice of
random number generator (RNG) is particularly rel-
evant, as different types of RNG have different prop-
erties. Cosmos uses the bsd random() RNG, which
uses the linear feedback shift register generation tech-
nique. bsd random() does not suffer from some of the
deficiencies of many versions of the standard random()

RNG.

Measurement Techniques

In any population of self-replicating entities which are
competing against each other for resources required for
replication (e.g. energy and materials), there are three
factors which determine the rate at which any par-
ticular type of replicator will spread throughout the
population (Dawkins 1989). These are the life-span or
longevity of the replicator, the rate at which it replic-
ates (its fecundity), and the number of errors in makes
while producing copies of itself (its copy-fidelity). A
number of measures were chosen to track changes in
each of these three factors through an evolutionary run.

For longevity, we looked at the age at death of each



program. Specifically, for time slice windows of equal
width from the start to the end of the run, we plot-
ted the age at death of each program that died within
that time slice window. Example plots are shown in
Figure 2. The plots for measures of fecundity and
copy-fidelity, described below, also used this window-
ing technique. For the plots for all three of these
factors, the data is pruned by only plotting values for
individual programs of types which achieved a concen-
tration of at least two individuals at some time during
the run. In the plots, the darkness displayed at any
point reflects the number of individual programs tak-
ing that particular value at that particular time.
For fecundity, we looked at two measures: the num-

ber of time slices between the first and second success-
ful replication of each program (the replication period)
(this could obviously only be applied to programs that
successfully replicated at least twice in their lifetime),
and the length of programs. Example plots for replic-
ation period are shown in Figure 9.
For copy-fidelity, we looked at three measures: the

flaw rate, the number of faithful (error-free) replica-
tions made by individual programs over their lifetime,
and the number of unfaithful replications. Example
plots of these three measures are shown in Figures 3
and 4.
In addition to these six measures, the population

size throughout the run was also recorded, as was the
population diversity (the number of different types of
program in the population).
Four measures suggested by Bedau et al. were

used: the Activity (presence), Mean Activity (pres-
ence), Activity (concentration), and Mean Activity
(concentration), along with their visualization tech-
nique of plotting “activity distribution functions” (also
referred to as “activity waves”). The basic idea behind
all of these techniques is the same, involving the notion
of the evolutionary activity of each genotype (type of
program) in the population:

“the evolutionary activity ai(t) of the i
th geno-

type at time t [is] its concentration integrated over
the time period from its origin up to t, provided
it exists:

ai(t) =

{
∫ t

0 ci(t)dt if genotype i exists at t
0 otherwise

where ci(t) is the concentration of the ith genotype
at t. A genotype’s evolutionary activity ... reflects
its adaptedness (relative to the other genotypes
in the population) throughout its history in the
system.” (Bedau & Brown 1997)

Activity (concentration) is defined at time t as
∑

i ai(t). Activity (presence) is defined similarly, but

with ci(t) defined to simply reflect whether genotype
i exists at time t, rather than being a measure of con-
centration (i.e. ci(t) is 1 if genotype i exists at t,
and 0 otherwise). Mean Activity (concentration) and
Mean Activity (presence) are defined as their respect-
ive Activity measures divided by the diversity (number
of different genotypes) of the population at t.
For a fuller explanation of these measures and the

reasons they are defined as they are, refer to (Bedau
et al. 1997; Bedau & Brown 1997; Bedau & Packard
1991).
To end this section, we acknowledge that paleobio-

logists have developed their own suite of measures of
biological evolution. Daniel McShea has recently pub-
lished some particularly interesting work on tests for
evolutionary trends (McShea 1994), and definitions of
complexity (McShea 1996; 1991). Ideally, we would
like to be able to use the same set of measures for
studying both natural and artificial evolution. Unfor-
tunately, the amount of evolutionary change occurring
in Cosmos in the runs reported here is really very small
compared to the sorts of macroscopic trends that Mc-
Shea’s measures were designed to track, so it is not
clear that these measures can usefully be applied to
artificial evolutionary systems (or at least to Cosmos)
at present.

Method

Nineteen runs of Cosmos were initialized, each with
exactly the same ancestor programs, and exactly the
same parameter values except for the seed for the ran-
dom number generator.
Most of the parameters took on the system’s

default values; those that did not are listed in
the Appendix. The most salient of these are
grid size, set to 40 (i.e. a 40 x 40 square en-
vironment), max cells per process, set to 800, and
number of timeslices, set to 300,000.
For each completed run, the measures described in

the previous section were investigated. To recap, these
measures were as follows:

1. Program age at death

2. Replication period (time between 1st and 2nd
faithful replication)

3. Program length

4. Flaw rate

5. Number of faithful replications per program

6. Number of unfaithful replications per program

7. Population size

8. Population diversity

9. Activity (presence)
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Figure 1: Population size, Runs 14 (left) and 18 (right)

10. Mean activity (presence)

11. Activity (concentration)

12. Mean activity (concentration)

13. Activity waves

Results

For each measure, the results from each of the 19 runs
were compared. (In the following, the pairs of run res-
ults displayed in Figures 1–9 and Figure 15 were gener-
ally chosen because they illustrate noticeably different
results.)

Population Size, Age at Death, Flaw Rate,
Number of Faithful Replications, Number
of Unfaithful Replications.

In each run, the population size rose rapidly from the
initial value (64 ancestors) up to 800, the maximum
number allowed. Whenever this ceiling was reached,
10% of the population was killed off stochastically, but
according to each program’s internal energy levels (as
described earlier). After the ceiling had first been
reached, the population size fluctuated in the region
of around 700-800 programs for the rest of the run.
Typical population size graphs are shown in Figure 1.
No trends were found for program age at death, flaw

rate, number of faithful replications per program, and
number of unfaithful replications per program. That is,
for each of these measures, the distribution of values
across the population showed no change right through
the run. In addition to showing no trends, the absolute
values of the measures were generally very similar in
different runs. Example graphs for these measures are
shown in Figures 2 (age at death), 3 (flaw rate), and 4
(faithful and unfaithful replications per program). In
Figures 2 and 3, the plot on the left hand side shows a
representative graph of the measure, as observed in the
majority of the runs. The plots on the right hand side
of Figures 2 and 3 show slightly unusual or noteworthy
cases.
For Age at Death (Figure 2), there are a couple of

points to note. Most obviously, there is considerable

structure in the distribution of ages at which organ-
isms die. This is interpreted as indicating that the
cycle of births and deaths in the population is well
synchronized throughout the run. The figure shows
that the majority of programs live for some multiple
of a little over 130 time slices, with fewer programs
surviving for each successive multiple. This figure of
130 time slices corresponds very well with the time it
takes the programs to replicate (see Figure 9). The ob-
vious explanation is that each time the population size
reaches the ceiling of 800 programs, a number of pro-
grams die, creating space for the remaining programs
to reproduce. Once this reproduction stage occurs, the
population size is soon at the ceiling again, so the cycle
repeats. The extinctions triggered by the population
size hitting the ceiling are therefore periodic, resulting
in the observed distribution of ages, with most organ-
isms surviving for an integral multiple of the period of
this cycle. The second point about the Age at Death
plots is that, in some runs, a slight kink in seen in them
(e.g. in the middle section of the plot for Run 10, on
the right hand side of Figure 2). Having just discovered
that age of death is related to the replication period
of the programs, it is not surprising to see that these
kinks are associated with times of significant change in
the replication period of the programs. For the graph
of replication period for run 10, corresponding to the
Age at Death plot on the right hand side of Figure 2,
see the right hand side of Figure 9.

For flaw rates (Figure 3), in 16 out of the 19 runs,
very few programs with flaw rates different to that of
the ancestor programs appeared throughout the run.
However, in three runs (3, 11 and 19), the whole popu-
lation moved to a higher rate during the run (the figure
effectively shows the reciprocal of the flaw rate, so the
increase in flaw rate appears as a downward trend). If
these changes in flaw rate were adaptive, one might ex-
pect to see corresponding changes in other measures,
particularly the number of faithful and unfaithful re-
productions per organism. However, no such trends
were observed (the graph of number of unfaithful re-
productions per organism for Run 3, for example, is
shown on the right hand side of Figure 4). It therefore
appears that these changes in flaw rate were the result
of random (genetic) drift.

Activity (presence), Mean Activity
(presence), Activity (concentration), Mean
Activity (concentration), Diversity,
Program Length, Replication Period.

To recap, the measures just discussed generally showed
no trends, and their absolute values were very sim-
ilar across different runs. In contrast, trends were ob-
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Figure 2: Age at Death, Runs 5 (left) and 10 (right)
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Figure 3: 1

FlawRate
, Runs 8 (left) and 19 (right). The

vertical axis is scaled by a factor of 106.

served in seven of the other measures (i.e. Activity
(presence), Mean Activity (presence), Activity (con-
centration), Mean Activity (concentration), Diversity,
Program Length and Program Replication Period—
discussion of the wave plots will be left until the end of
the section), with noticeable differences between some
of the runs. Plots for some of these measures are
presented for two example runs (17 and 10) in Fig-
ures 5–9.

Ideally, we would like to know whether the differ-
ences in these measures between any of the runs are
statistically significant. Such differences would indic-
ate that evolution might genuinely be treading a dif-
ferent path, for no other reason than the different seed
used for the random number generator when the runs
commenced. The choice of a statistical test for this
task was not immediately obvious. We wished to avoid
parametric tests, as we did not want to make assump-
tions about the population parameters (for example,
there is no reason to suspect that any of the measures
we are looking at are normally distributed across all
possible evolutionary runs).

We therefore chose a non-parametric method—a
randomization version of the paired sample t test (see,
for example, (Cohen 1995)). For each measure of in-
terest, this test will tell us, for each run, which other
runs produced significantly different results. The test
can indicate whether two samples are related without
any reference to population parameters. The proced-
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Figure 4: Number of Faithful Replications per Program,

Run 6 (left). Number of Unfaithful Replications per Pro-

gram, Run 3 (right)
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Figure 5: Activity (concentration), Runs 17 (left) and 10

(right)

ure used was as follows:

Procedure: Randomization Version of the
Paired-Sample t Test For each run, 10 sample
data points were extracted, each one representing the
value of the measure in question at one of 10 equally
spaced times throughout the run.

The basic idea of the paired sample t test in this
case is to consider the 10 sample points for pairs of
runs in turn. By doing pairwise tests at 10 sample
points we are comparing the measures at a number
of points through the run, with no point having more
significance than any other. For each pair of runs, the
difference between corresponding samples is calculated,
together with the mean value for the 10 differences. We
then ask what the likelihood is of achieving this mean
difference under the null hypothesis that the two runs
are statistically equivalent. The method by which this
is done will be explained shortly.

Obtaining Raw Sample Points In the case of
measures which are already statistics of the whole pop-
ulation at any given time (i.e. both forms of the Activ-
ity measure, both forms of the Mean Activity meas-
ure, and Diversity), these 10 sample points could be
taken directly from the value of the measure at the ap-
propriate time. However, to prevent high-frequency
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Figure 6: Mean Activity (concentration), Runs 17 (left)

and 10 (right)

0 500 1000 1500 2000 2500 30000

50

100

150

200

250

300

350

400
Run 17

Time slice x 100

D
iv

e
rs

it
y

0 500 1000 1500 2000 2500 30000

50

100

150

200

250

300

350

400
Run 10

Time slice x 100

D
iv

e
rs

it
y

Figure 7: Diversity, Runs 17 (left) and 10 (right)

changes in these measures from producing aberrant
results, the measures were first smoothed before the
samples were taken (using median-smoothing with a
window of 10,000 time slices).
In the case of the measures where the existing data

consisted of multiple values at each time slice, each
representing individual programs (i.e. the Program
Length and Replication Period measures), each of the
10 sample points was produced by taking the median
value of all values lying within a window of 1000 time
slices around the time slice being sampled.

Obtaining Differenced Sample Points Because
of the cumulative nature of evolution, it is possible
that a small difference in the sampled value of a meas-
ure early on in a pair of runs will be magnified into a
large difference later on, even if the two runs are ac-
tually proceeding in a fairly similar fashion. In order
to gauge the magnitude of this effect, a duplicate set
of tests was run, which used the difference in value
between adjacent sample points as the figure to com-
pare between runs, rather than the absolute value of
the sample points. Using differenced data should re-
duce the influence of any cumulative disparity between
runs.

Testing for Significance We are considering the
difference in values between corresponding sample
points in a pair of runs. Under the null hypothesis that
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Figure 8: Program Length, Runs 17 (left) and 10 (right)
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Figure 9: Replication Period (interval between first and

second faithful replications), Runs 17 (left) and 10 (right)

the two runs are equal, however, it is equally likely that
these values would be reversed (i.e. for sample point n
for runs A and B, the null hypothesis is that the values
An from run A and Bn from run B are just as likely
to have come from the other run—An from run B and
Bn from run A). If this were the case, the difference
between the values would be the same as before, but
with the sign reversed. We can test for the significance
of the observed mean difference by constructing the
distribution of all mean differences obtained from look-
ing at each possible combination of each of the paired
samples into one or other of the runs. As there are
10 paired samples, there are 210 (1024) such combin-
ations. The exact procedure is listed below (adapted
from (Cohen 1995)), which may make things clearer:

1. For run I and J, if SI and SJ are lists of the 10
sample data points for each run, construct a list D
of the differences between these values, D = SI−SJ .
Denote the mean of these differences x̄D.

2. if x̄D = 0

p = 0.5

else

(a) Set a counter C to zero.

(b) for i = 0..1023

• Construct a list D∗ such that D∗

j = Dj if bij = 0,
or D∗

j = −Dj if bij = 1, for j = 1..10, where bij



is the jth digit of i in base 2.

• denote the mean of the new list x̄D∗

• if x̄D > 0

if x̄D∗ ≥ x̄D, then increment C by one

else if x̄D < 0

if x̄D∗ ≤ x̄D, then increment C by one

endif

(c) p = (C/1024)

p is the (one-tailed) probability of achieving a result
greater than or equal to x̄D (or less than or equal to x̄D

if x̄D < 0) by chance under the null hypothesis. That
is, p is the probability of incorrectly rejecting the null
hypothesis that systems I and J have equal population
mean scores for the measure in question.
For each of the seven measures being considered

(Activity (presence), Mean Activity (presence), Activ-
ity (concentration), Mean Activity (concentration),
Diversity, Program Length and Replication Period),
this procedure was followed for each of the 19(19 −

1)/2 = 171 pairwise comparisons between runs, for
both the raw sample data and the differenced sample
data.
The p values for each pairwise comparison are shown

graphically in Figures 10–14. These figures show one
histogram for p values obtained using raw sample data,
and another for p values obtained using differenced
sample data. In all of the histograms, any p value less
than 0.05 is plotted as zero. Bars of non-zero height on
the histograms therefore represent pairs of runs which
are not significantly different from each other for the
measure in question at the p = 0.05 level.
(Note that, in order to emphasize the formation of

various clusters of runs in these histograms, the runs
in each histogram are arranged along the x and y axes
in increasing order according to the mean of their 10
sample values. While this emphasizes clusters in any
one histogram, it means that clusters occurring in sim-
ilar positions in the histograms of different measures do
not necessarily represent the same runs.)
The randomization version of the paired-sampled

t test has some advantages over other methods of
investigating pairwise comparisons (e.g. it is non-
parametric), but it has the disadvantage that it is “vir-
tually certain to produce some spurious pairwise com-
parisons” (Cohen 1995) (p.203). Cohen suggests one
way, not to get around this problem, but at least to
have some idea of the reliability of a particular set
of pairwise comparisons (Cohen 1995) (p.204). The
idea is to first calculate, at the 0.05 level, how many
runs, on average, each run differed from (call this
n̄0.05). Then calculate a similar figure at a much more
stringent level. As we have 1024 numbers in our dis-

tribution of mean differences, the 0.001 level is ap-
propriate. Finally, calculate the criterion differential,
C.D. = n̄0.05 − n̄0.001. If C.D. is large, this indicates
that many significant differences at the 0.05 level did
not hold up at the 0.001 level. A small C.D. value in-
dicates that the experiment differentiates runs unequi-
vocally, therefore lending more weight to the validity
of the results at the 0.05 level. Table 1 shows n̄0.05,
n̄0.001 and C.D. for each measure, and for both raw
and differenced sample data.

Table 1 reveals a number of interesting results. The
most striking is the difference in the results of using
raw sample points compared with differenced sample
points.

Using raw data, the average number of runs that
any particular run was significantly different to at the
0.05 level ranged from 3.89 for Activity (presence) to
13.26 for Diversity. However, the criterion differential
for all of these measures is high (ranging from 3.68
for Activity (presence) to 12.32 for Program Length).
This suggests that the validity of the figures at the 0.05
level are questionable, and the true figures are probably
somewhat lower than those calculated. Having said
this, the average number of runs that any particular
run was significantly different to even at the 0.001 level
was non-zero for the five measures suggested by Bedau
et al. (ranging from 0.21 for Activity (presence) to 6.32
for Diversity).

Using differenced data, the results have a very dif-
ferent look. In only two measures were any runs sig-
nificantly different from any others even at the 0.05
level (0.11 for Activity (concentration) and 0.42 for Di-
versity), and both of these vanished at the 0.001 level.
In other words, these figures suggest that, for all of
these measures, starting off at any point during any of
the runs, the amount the measure changed over a given
period was not significantly different compared to any
of the other runs.

Activity Wave Diagrams

Whereas the Activity andMean Activity measures pro-
duce a summary figure for a whole population of geno-
types at time t, activity wave diagrams plot the success
of every genotype in the population at every stage of
the run (Bedau & Brown 1997). They are therefore a
useful visualization technique for competition between
genotypes, and the shape of an individual wave can
also suggest the level of adaptive value of the corres-
ponding genotype relative to its competitors.

The activity wave diagrams for most of the runs
looked surprisingly different, although it is hard to
quantify these differences (the Activity and Mean
Activity measures do quantify some aspects of them,



Measure Data Type n̄0.05 n̄0.001 C.D.

Activity (presence) raw 3.89 0.21 3.68
differenced 0.00 0.00 0.00

Mean Activity (presence) raw 12.00 4.53 7.47
differenced 0.00 0.00 0.00

Activity (concentration) raw 8.42 2.11 6.32
differenced 0.11 0.00 0.11

Mean Activity (concentration) raw 10.32 4.11 6.21
differenced 0.00 0.00 0.00

Diversity raw 13.26 6.32 6.95
differenced 0.42 0.00 0.42

Program Length raw 12.32 0.00 12.32
differenced 0.00 0.00 0.00

Replication Period raw 10.21 0.00 10.21
differenced 0.00 0.00 0.00

Table 1: Mean number of runs that each run is significantly different from at the 0.05 level (n̄0.05) and 0.001 level (n̄0.001),

and the criterion differential (C.D.). See text for details.
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Figure 10: Activity (concentration): Pairwise compar-

isons (p values) between runs. Raw Sample Data (left).

Differenced Sample Data (right). p values below 0.05 are

plotted as zero, so bars of non-zero height indicate pairs of

runs that are not significantly different at the 0.05 level.

See text for details.

but no single measure captures all of the important
information that the diagrams can tell us). Example
activity wave diagrams (for runs 17 and 10) are presen-
ted in Figure 15.

One way in which the activity wave diagrams can be
very useful is in evaluating the effectiveness of differ-
ent measures of evolution at highlighting the import-
ant adaptive events during a run. In particular, in the
runs reported here it was observed that the Activity
and Mean Activity measures based purely upon the
presence of genotypes in the population bear little re-
semblance to the salient features of the wave diagrams.
Indeed, these measures were introduced mainly so that
they could be applied to fossil data as well as to data
from artificial systems (the concentration data for fossil
taxa being unknown) (Bedau et al. 1997). The meas-
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Figure 11: Mean Activity (concentration): Pairwise

comparisons between runs. See text and caption of Fig-

ure 10 for details.
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Figure 12: Diversity: Pairwise comparisons between

runs. See text and caption of Figure 10 for details.

ures based upon the concentrations of genotypes should
be better, and the results of these runs indicate that
this is indeed the case. Activity (concentration) usu-
ally seems to give a better reflection of the wave dia-
gram than does Mean Activity (concentration). This
is possibly because the latter measure is defined as
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Figure 13: Program Length: Pairwise comparisons

between runs. See text and caption of Figure 10 for de-
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Figure 14: Replication Period: Pairwise comparisons

between runs. See text and caption of Figure 10 for details.

Activity divided by Diversity, but diversity, by its very
nature, does not take account of the concentrations of
different genotypes, but merely their presence.

Discussion

As discussed earlier in the paper, the three factors
that are fundamental to the success of genotypes in an
evolving population are the longevity, fecundity and
copy-fidelity of the individuals. The measures chosen
to track these factors in the runs reported here were
Age at Death, Replication Period, Program Length,
Flaw Rate, Number of Faithful Replications and Num-
ber of Unfaithful Replications. Very little change was
observed in any of these measures except Program
Length and Replication Period throughout the course
of any of the runs. It therefore appears that, under the
set of parameters used in these runs, the programs are
only able to evolve along one of the three axes (fecund-
ity) theoretically available to them. Studying some of
the programs that evolved during the runs suggests
that most adaptive events involved either making the
program shorter by removing (what turned out to be)
redundant instructions, or by adding energy collection
instructions to reduce the chance of the program being
culled.

For Program Length and Replication Period, signi-

Figure 15: Activity Wave Diagram, Runs 17 (left) and 10

(right)

ficant differences (at the 0.05 level) were observed in
the raw data values between some runs. For these
measures, the mean number of runs that each run
is significantly different from at this level was calcu-
lated as 12.3 for Program Length and 10.2 for Replica-
tion Period, but the high criterion differential on these
scores suggests that the true value should be some-
what lower (looking at Figures 13 and 14, probably
somewhere in the range of 6 to 10).

Looking at the derived measures suggested by Be-
dau et al. (Activity (presence), Mean Activity (pres-
ence), Activity (concentration), Mean Activity (con-
centration) and Diversity), significant differences were
found between runs which did hold up even at the 0.001
level. Again, the true value of each of these differences
probably lay in the range of roughly 6 to 10.

These results indicate that each run, on average, per-
formed significantly differently to between a third and
a half of the other runs. One of the main reasons for
doing these experiments was to understand how we
should deal with contingency when conducting further
experiments with Cosmos. If we assume that at least
the finding that each run is statistically different to
more than a third of the others is a general result,
then we can use the following rule of thumb: For each
re-run of a trial with a different seed for the RNG, the
probability of its outcome being statistically equivalent
(at the p = 0.05 level) to the original one is, at most,
about 2

3 . Therefore, the number of re-runs that should
be conducted to be confident (at the 95% level) of at
least seeing one statistically different type of behaviour
is n, where (23 )

n ≤ 0.05, i.e. n ≥ 7.388, or, in round
figures, n ≥ 8. This is the number of re-runs after the
original, so, finally, we can say that any trial should be
conducted nine times with different seeds for the RNG.

Having said that each run performed significantly
differently to at least a third of the other runs, pre-
cisely which runs were significantly different depended
upon the particular measure being looked at. This
emphasizes the fact that one should be clear about ex-
actly what measure is being used when talking about
comparisons between evolutionary runs.



The fact that no significant differences were found
between any of the runs for any of the measures when
looking at differenced sample data is of great interest.
It suggests that the significant differences observed in
raw sample data may be caused (at least in part) by
the cumulative magnification of initially small differ-
ences as a run proceeds. If this effect is controlled for
(which was the purpose of using differenced data), the
behaviour of the runs in terms of the change in values
of the measures over a given time period would seem to
be very similar in all of the runs. However, because of
the cumulative magnification of small differences, the
absolute outcomes of the runs do differ significantly in
some cases, so contingency does play a big role.
Finally, we can ask to what extent these results can

be generalized to other evolutionary systems. Consid-
ering biological evolution first, it is clear that even just
in terms of population size and the length of runs, the
system is completely trivial. Also, the role of contin-
gency may be different in systems which have rich eco-
logical interactions (of which Cosmos programs have
very little). It would therefore be unwise to claim that
these results can tell us much about the role of contin-
gency in biological evolution, but they may be relevant
in specific cases. As for other artificial evolutionary
systems, Cosmos is of comparable design, so the res-
ults, and the rule of thumb about the number of trials
that should be run, should be broadly applicable to
these platforms as well. The extent to which ecological
interactions affect the results may be investigated by
running similar trials on systems that display stronger
interactions of this kind (such as Tierra).
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Appendix:Non-default parameter values

ancestor=user defined number=64 rng seed=[variable]

limited run=yes number of timeslices=300000 grid size=40

horizontal wrap=yes vertical wrap=yes max cells per process=800

x delta=0.025 et value constant=0.025 et value power=1.0

max energy tokens per cell=50 apply flaws=yes

max energy tokens per grid pos=25 mutation period=1000000

mutation application period=1 default flaw period=1000000

neighbouring genomes readable=yes
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