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Abstract

We consider the problem of non-trivial pat-
tern formation in decentralised multi-robot sys-
tems, and, in particular, how to achieve time- and
space-varying behaviour. To tackle the problem,
we explore the idea of evolving the fine-level regu-
lation of an underlying self-organising controller.
Results from simulation show the promise of the
approach: we demonstrate a robot cluster that
can stably maintain two different spatial patterns,
switching between the two upon sensing an exter-
nal signal; we also demonstrate a cluster in which
individual robots develop differentiated states de-
spite having identical controllers (which could be
used as a starting point for functional specialisa-
tion of robots within the cluster). The controller
was developed with a particular hardware plat-
form in mind—the underwater HYDRON robots
developed by the HYDRA consortium (an EU
Fifth Framework project). We discuss the im-
plementation of the controller on this and other
multi-robot platforms comprising free-moving in-
dividual robots, and suggest possible simplifica-
tions of the design. This work could eventually
have applications in various situations that re-
quire robust, complex self-organising behaviour in
a collection of free-moving robots, e.g. in space,
underwater and nano-scale systems.

1. Introduction

There has been much interest in decentralised multi-
robot systems in recent years, due to their potential
advantages in many applications over more traditional,
monolithic architectures (Arai et al., 2002). The goal is
to design systems that can accomplish their tasks more
reliably, faster and/or cheaper than could be achieved by
a single more complex robot. The general challenge is
to develop controllers for the individual robots such that

the group as a whole performs the desired higher-level
task through the co-ordinated action of the individuals.

In the current work we are specifically interested
in multi-robot systems comprising a large number
of fairly simple, free-moving robots with limited
individual capacity for sensing, actuation and com-
munication. The target hardware is described in
Section 2. A variety of decentralised controllers
for free-moving systems have been proposed in
the literature, e.g. (Holland and Melhuish, 1999,
Fredslund and Matarić, 2002, Nembrini et al., 2002,
Şahin et al., 2002, Quinn et al., 2003). In contrast to
these previous studies, the present work concentrates
on providing an underlying self-organising system for
robust pattern formation (a similar approach was
suggested by (Spears and Gordon, 1999)). We advance
on previous work by extending the complexity of the
goal tasks. This is achieved by allowing the behaviour
of individual robots to be influenced by communication
from neighbouring robots or by detection of signals from
the environment. We use a genetic algorithm to evolve
controllers to perform particular tasks.

There is insufficient space in this paper to provide all
the details of the system; the interested reader is referred
to (Taylor et al., 2007) for full details. Here we highlight
the general approach taken, describe some representa-
tive results, and discuss possible simplifications of the
approach and potential applications.

2. Robot Hardware and Simulation

This work was conducted as part of a project to de-
velop distributed controllers for a group of real un-
derwater robots called HYDRONs (see (Taylor, 2004,
Østergaard et al., 2005)). Each HYDRON unit is a
sphere of approximately 11cm diameter, with control of
translational movement in three dimensions (provided
by a system for impelling/ejecting water for horizon-
tal movement, and a buoyancy control system for ver-
tical movement). The units also have integrated depth



communication
LED

site

Impellor nozzle
(on underside)Ejector nozzles

Battery pack

Figure 1: A single HYDRON robot

sensors. Inter-unit communication is provided by a set
of eight directional optical transmitters and receivers
arranged around the HYDRON’s surface. Computing
power is provided by an on-board Intel 33MHz 386EX
processor with 512Kb RAM and 1Mb Flash disk. Power
for all on-board systems is provided by two lithium-ion-
polymer battery packs, making the units completely au-
tonomous. The hardware design is shown in Figure 1.
We did not have access to the finished hardware at the
time the experiments reported here were conducted; the
current experiments were therefore conducted in simu-
lation, with the expectation that future work will be
conducted on the real robots. For speedy execution
we used a simplified two-dimensional simulation (see
(Ottery and Hallam, 2004, Ottery, 2006)), although this
still models fluid forces on the robots with reasonable
accuracy.1 The sensory, communication and actuation
abilities of the simulated robots are based upon the spec-
ifications of the real HYDRONs, although in the 2D case
we model four communication sites, rather than eight,
equally spaced around the robot’s circumference.

3. Controller Design

The approach reported here came about through the
combination of two previous lines of research on
biologically-inspired controllers. One line concerned the
evolution of Genetic Regulatory Network (GRN) con-
trollers that interfaced directly with the robots’ control
systems, and the other concerned a Cellular Adhesion
Molecule (CAM)-based controller for pattern formation.
In this section we summarise the designs of the individ-
ual GRN and CAM controllers (Sections 3.1 and 3.2 re-
spectively), then describe the combined controller (Sec-
tion 3.3). Full details are given in (Taylor et al., 2007).

1Subsequent work with the CAM controller has demonstrated
that the self-organising behaviour produced in the 2D model trans-
fers successfully to a 3D model (Ottery, 2006).

Sensory Docking/contact sensor, [Depth sensor]
Signalling Optical transmitters and receivers
Actuation Move left, right, forward, backward, [up], [down]

Table 1: Robot capabilities used by the controller. Square

brackets indicate capabilities used in 3D simulations, but not

in the 2D simulations reported here.

3.1 GRN Controller

The Genetic Regulatory Network (GRN) controller was
a development of previous work by (Bongard, 2002),
adapted for free-moving multi-robot systems. The two
major factors that influenced the controller design were
the specifications of the real hardware, and the anal-
ogy to biological genetic regulatory networks. It was
assumed that each robot has a basic set of sensory, sig-
nalling and actuation capabilities. The particular set of
capabilities assumed in the current work—which match
the specifications of the real HYDRON units—is detailed
in Table 1, although the design of the controller is such
that the set can be easily modified.

The controller for each robot comprises:

• A genome: a variable length string of digits which
may encode information about a number of genes.

• A cytoplasm: this contains a variety of proteins lo-
cated at discrete diffusion sites. The locations of
these sites correspond with the optical communica-
tion sites on the robot’s surface, so the real robots
have eight, and the 2D simulated robots used in these
experiments have four.

Each gene produces a specific type of protein when
expressed. The expression of each gene is controlled by
a set of enhancer proteins and a set of inhibitor proteins.
This sets up the essential ingredients of the regulatory
network; genes produce proteins, and proteins control
the expression of genes.

Proteins act as the interface between the genome and
the physical environment. In addition to controlling
gene expression, some types of protein also interface with
the robot’s sensory, signalling and actuation capabilities.
When a gene produces a protein, it is released into the
cytoplasm at one of the diffusion sites (the specific site of
deposition being under genetic control). A subset of pro-
tein types is able to diffuse from the diffusion sites into
the cytoplasm of neighbours (a process implemented by
the inter-robot communication system); in this way, be-
haviour can be influenced by the activity of neighbouring
robots. A summary diagram of the controller design is
shown in Figure 2.

3.2 CAM Controller

The Cellular Adhesion Molecule (CAM) controller was
inspired by the robust self-organisation which is observed
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Figure 2: Schematic of the GRN Controller design.
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Figure 3: Two possible equilibrium states of a heterogeneous

aggregate as given by the Differential Adhesion Hypothesis.

when aggregates of certain cell types are combined. In-
stead of remaining distributed at random, a degree of
sorting takes place, causing the cells to form hierarchical
patterns of coherent homotypic cells.

An explanation for this behaviour was proposed by
(Steinberg, 1963). His “differential adhesion hypothe-
sis” assumes that cells rearrange to minimise their free
energy and thus form the most thermodynamically sta-
ble configuration. For example, if two cell types (A and
B) are mixed, initially the bonding between the cells
will be random. However, if the bonds are of different
strengths, then a gradual selection of the strongest bonds
will cause the cells to rearrange into a more stable con-
figuration. If homotypic (A-A, B-B) bonds are stronger
than heterotypic bonds (A-B), the cells will attempt to
sort into pure populations of the different types (Fig-
ure 3(a)). If, however, the A-A bonds are stronger than
the A-B bonds, which are in turn stronger than the B-B
bonds, then the A cells will migrate centrally while the
B cells form a shell around them (Figure 3(b)).

The CAM controller approximates this behaviour by
using the robots’ communication systems to model vir-
tual membranes and adhesions between these mem-
branes. The adhesions are modelled by Artificial Cel-
lular Adhesion Molecules (A-CAMs) distributed on the
membranes. The resulting attractions and repulsions
experienced by the units are then modelled as physical
movements which drive the virtually bonded aggregate
to some desired equilibrium configuration. Full details
of the system can be found in (Ottery, 2006).

3.3 Combined GRN-CAM Controller

The GRN and CAM controllers were combined as shown
schematically in Figure 4. The design of both controllers
was essentially unchanged; the only major difference is
that the set of proteins in the GRN controller that act as
an interface to the robot’s actuation system now deter-
mine the expression of specific A-CAMs on the robot’s
virtual membrane, rather than directly controlling the
robot’s movement.

Specifically, 12 proteins are associated with the level
of expression of unique A-CAMs on the robot’s virtual
membrane. Therefore, the GRN actually varies the ad-
hesion between neighbouring robots and any real actua-
tion is generated as a result of modelling the adhesions.
The bonding relationships between the A-CAMs are pre-
defined such that four of them are capable of homotypic
bonding while the remaining eight are capable of het-
erotypic bonding. This provides eight different bonding
relationships of various strengths for the GRN to exploit.

Furthermore, in the GRN controller, particular types
of sensory protein were produced in the cytoplasm when
the robot was in close vicinity to another robot. In
the combined controller these proteins are now produced
in proportion to the number of A-CAMs on the mem-
brane that are currently bound to A-CAMs on neigh-
bouring membranes. This is achieved by linking the 12
A-CAM types to the concentration of 12 unique proteins.
When one of the A-CAM types bonds with an A-CAM
expressed on another robot’s membrane, the protein’s
concentration is increased by a level proportional to the
number of bonds.

4. Evolution of Controllers

4.1 The Genetic Algorithm

To produce controllers which will cause a group of robots
to achieve a particular task, a genetic algorithm (GA)
was employed to evolve a population of genomes. A gen-
erational GA was used, with tournament selection and
elitism. Two-point crossover was applied, using different
crossover points on each parent, which therefore allowed
the length of an offspring genome to be shorter or longer
than that of its parents (i.e. genome length can evolve
over time).

4.2 Smart Mutations

The successful evolution of a GRN with non-trivial dy-
namics requires that (some of) the proteins in the cy-
toplasm bind to the regulatory regions of other genes;
it is only in this way that proteins can act as signals
to influence the dynamics of the robot, thereby allow-
ing the creation of complex regulatory networks. There
is therefore a matching problem during evolution—to
successfully evolve a new regulatory gene it is insuffi-
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Figure 4: Schematic of the combined GRN-CAM controller design

cient just to add a new gene to the genome; its product
must actually be able to bind to the regulatory region
of at least one other gene if it is to have any effect. In
the original design of the GRN controller (Taylor, 2004)
this correspondence between gene products and regula-
tory regions could only evolve by fortuitous mutations.
However, if we are willing to relax the biological real-
ism of the analogy, we can improve the GA to make
these correspondences much more likely to occur. This
is achieved by introducing an additional type of muta-
tion, called a smart mutation; these ensure that, in gen-
eral, genes are responsive to the specific proteins that
are produced in the cytoplasm during the operation of
the controller, rather than to randomly chosen proteins
which may never actually be expressed. Further details
are given in (Taylor et al., 2007).

4.3 Fitness Evaluation

To evaluate a controller, it was copied (with identical
initial cytoplasmic state) into each of the robots in the
group. The robots were allowed to run for a fixed du-
ration, and the overall behaviour of the group was then
evaluated in terms of the given task. In these experi-
ments we used a group size of 36 robots, and each ex-
periment was run on three separate trials starting from
different initial configurations. The final fitness assigned
to the genome was the mean fitness from the three trials.
A series of tasks was designed to compare the quality of
solutions when using the GRN-only controller (Section
3.1) and when using the combined GRN-CAM controller

(Section 3.3).2 Two tasks are reported here, described in
Sections 5.1–5.2. Five evolutionary runs were performed
for each of the four conditions (2 tasks and 2 controller
types). Full details of the experiments’ configuration are
given in (Taylor et al., 2007).

5. Experiments

In each of the experiments described below, a sample
of five evolutionary runs was carried out for both the
GRN-only controller and the combined controller.

During the execution of each task it is clearly desirable
that, at the very least, the robots maintain a single con-
nected aggregate (i.e. each robot must always be within
communication range of at least one other). Therefore,
the fitness value awarded to each controller (Ft) was di-
vided into two separate components. The first of these
(F1) simply reflects the proportion of the simulation dur-
ing which the connected aggregate was maintained:

F1 =
TM

TE

(1)

where TE is the total evaluation time and TM is the time
the connected aggregate was maintained for. The second
(F2) was the fitness score achieved in relation to the spe-
cific task (defined in Sections 5.1–5.2), and therefore was
only awarded when the aggregate was maintained for the
entire simulation period. These components were given
relative weightings of 0.1 and 0.9 respectively,3 giving

2An extensive investigation into the properties of the CAM con-
troller by itself has already been reported in (Ottery, 2006).

3These weightings were selected experimentally.



the following two cases:

Ft =











0.1F1 if aggregate not maintained

0.1 + 0.9F2 if aggregate maintained for the
duration of simulation (F1 = 1)

(2)

As mentioned above, to determine a more general fit-
ness value, each controller was evaluated from three dif-
ferent initial configurations, and the individual fitness
scores were averaged to give an overall fitness.

5.1 Response to External Signals

This task was designed to investigate whether the con-
trollers could easily switch between different functions
in response to some environmental trigger. In practice,
such a trigger could take the form of a change in any en-
vironmental condition that the robots are able to detect
and would result in a corresponding change in concentra-
tion of one or more sensory protein(s). Therefore, this
was represented in the simulations by increasing the con-
centration of a small number of proteins in each robot’s
cytoplasm at some random time TS , within a prede-
fined period. The fitness value for the task was based
on the robot aggregate’s ability to demonstrate different
behaviours before and after the signal was introduced. In
this case, initially the aggregate was rewarded for main-
taining a constant minimum enclosed area. However,
once the signal was introduced, it was instead rewarded
for maintaining a constant maximum enclosed area. The
fitness function therefore had two components relating to
the difference between the area values D and the vari-
ance V of each period of the simulation.

ma =
1

TS

TS
∑

i=0

ai (3) mb =
1

TE − TS

TE
∑

i=TS+1

ai (4)

D =
mb

ma + mb

(5)

where ai is the area of the aggregate’s concave
hull at time i and TE is the full evaluation time.

v2
a =

1

TS

TS
∑

i=0

(ai − ma)2 (6)

v2
b =

1

TE − TS

TE
∑

i=TS+1

(ai − mb)
2 (7)

V =
min(vavb, kvmamb)

kvmamb

(8)

where the constant kv is used to control the maximum
level of variance that impacts on the reward (0.25 in
these experiments). As both D and V have different

levels of importance the final fitness is defined as:

F2 = kfD + (1 − kf )(1 − V ) (9)

where kf determines the relative weighting.
In the simulations presented in this work the evalua-

tion period was set to 100s and the signal was introduced
at a random time in the period 50±20s. In addition, the
control parameter kf was set to 0.75 to add extra weight
to the level of change in the aggregate’s behaviour.

5.2 Spatial Differentiation of Function

Differentiation is the process which allows a collection
of initially homogeneous robots to divide into a num-
ber of distinct subsets, each of which is capable of per-
forming a more specific function. The aim of this task
was to determine whether the controllers could achieve
this by generating two equally sized subsets of robots
(A and B), each exhibiting a unique pattern of protein
expression. In the actual simulations, the patterns that
were selected involved two ranges of 16 proteins α and
β, such that one pattern was achieved by maximising
the concentration of the α proteins while minimising the
concentration of the β proteins and the second pattern
was achieved by performing the converse. To encourage
the population to differentiate as quickly as possible, the
mean difference between these concentrations during the
entire evaluation period was used to calculate the final
fitness value. Therefore, it was possible to determine the
degree to which any single robot was a member of either
A or B using the following dr values:

ga =
1

U |α|

TE
∑

t=0

∑

i∈α

ct
i (10) gb =

1

U |β|

TE
∑

t=0

∑

i∈β

ct
i (11)

dr =
1

2
(ga + (1 − gb)) (12)

where ct
i is the cytoplasmic concentration of protein i at

time t, and U is a normalisation constant representing
the maximum summed concentration of a single protein
over the entire evaluation period.

Therefore, both ga and gb and thus dr will be in the
range [0.0, 1.0], with:

dr

{

> 0.5, if there are more set α proteins than set β

= 0.5, if both sets of proteins are equal
< 0.5, if there are more set β proteins than set α

(13)

Thus, if we sort the robots by their dr values and
assign the top half to group A and and bottom half to
group B, we can evaluate how well they have achieved the
differentiation task with the following fitness function:

F2 =
1

n





∑

i∈A

di +
∑

j∈B

(1 − dj)



 (14)



Therefore, if the robots are completely undifferenti-
ated (all the dr values are the same), F2 = 0.5. However,
if as desired the robots in A express more of the set α

proteins than set β proteins and the reverse is true for
the robots in B, F2 > 0.5 indicating that the robots have
partially differentiated.

6. Results and Analysis

6.1 Controller Evolution

The controller evolution results for both controllers are
shown in Figure 5. In each case, the mean and maximum
fitness values are given for each generation of a full evo-
lutionary run. Most significantly, the results show that
the combined GRN-CAM controller achieved better final
fitness values for both tasks. In addition, it also appears
far easier to find solutions for the combined controller,
which often starts at generation 0 with a higher fitness
than the best controllers evolved for the GRN by itself.
Additionally, the performance of the combined controller
is more consistent, as indicated by the smaller error bars.

In the signal response task, the combined GRN-CAM
controller finds a solution relatively quickly (even though
the CAM-only controller would have been unable to solve
the task). Figure 6 shows screen shots taken at regu-
lar intervals from a sample simulation—these show that
the cluster is performing the task well. In contrast, the
evolved GRN-only controllers show no noticeable change
in behaviour, and in many cases the aggregate even fails
to remain connected (data not shown).

In the differentiation task, it can be seen that the
GRN-CAM controller rapidly achieves differentiation, as
indicated by the fitness in excess of 0.55.4 The fitness
continues to improve over the run; the magnitude of fit-
ness improvement is very small, but this is mainly due
to the very large upper bound (U) used in the fitness
calculation (see Section 5.2). An example of the evolved
differentiation behaviour from a GRN-CAM controller is
shown in Figure 7. In contrast, the GRN-only controller
fails to find any solution.

6.2 Controller Quality

The best controllers obtained for each of the tasks were
subjected to a series of tests for scalability with larger
numbers of robots, specificity to initial configuration,
and ability to cope with perturbations in the form of ran-
dom forces and torques applied to the individual robots.
The GRN-CAM controller outperformed the GRN-only
controller, showing a better level of performance, and
more consistency, in almost all cases (data not shown;
full details in (Taylor et al., 2007)).

4Using only the differentiation fitness function a value of > 0.5
indicates differentiation. However, in the final fitness value this
increases to 0.55 (i.e. 0.5 × 0.9 + 0.1, see Equation 2).

7. Discussion

The reported experiments demonstrate that we have suc-
ceeded in our goal of moving beyond static pattern for-
mation; we have produced decentralised controllers that
show both temporally-differentiated patterns (Figure 6)
and spatially-differentiated patterns (Figure 7).

The controller quality experiments also demonstrate
that the GRN-CAM controllers, compared to the GRN-
only controllers, are more robust to environmental per-
turbations and scale better with larger clusters of robots.
This is not a great surprise, because the GRN-CAM sys-
tem has an underlying self-organising behaviour that al-
lows the robots to better cope with environmental dis-
turbances. This leads us to suspect that the GRN-CAM
controllers evolved in simulation would also transfer to
hardware better than would the GRN-only controllers.

Regarding the CAM-only controller, the addition of
the GRN allows us to evolve robots that change their
adhesive properties according to changes in protein con-
centrations (which may be due to the internal dynamics
of the GRN controller, or to the detection of external sig-
nals). The combined GRN-CAM controller, unlike the
CAM-only controller, can therefore produce both time-
and space-differentiated patterns.

The described controllers were designed with the HY-
DRON hardware in mind, and could be implemented
using the available on-board computing, sensing and ac-
tuation systems. An attractive feature of the GRN-CAM
controller is that the GRN interfaces with the underlying
CAM model rather than directly with the hardware—the
CAM model provides an abstraction layer that hides the
details of the hardware. A GRN-CAM controller could,
in principle, therefore be transferred to any robotic sys-
tem that implemented the CAM model, which requires
only modest computing and communication capabilities.

Historically, the GRN-CAM controller came about by
the fusion of two previous projects. In retrospect, some
aspects of the controller, particularly those related to
the GRN, appear overly complex. It is possible that a
much simpler system (e.g. a finite state machine) might
be able to achieve similar control of the underlying CAM
system, at least for the kinds of tasks considered here.

Looking forward, this system, like any other type of
evolved controller, will face issues of how to structure the
evolutionary process to achieve progressively more com-
plex behaviours. However, the demonstrated ability of
individual robots to adopt stable differentiation of state
could serve as a good starting point from which to build
more complex functional specialisation.

The described approach of evolving the fine-level regu-
lation of an underlying self-organising system has poten-
tial applications in any system of free-moving robots that
is required to display a repertoire of robustly-maintained
spatial patterns, with the ability to switch between pat-
terns on demand. The most obvious underwater ap-
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Figure 5: Mean and maximum fitness over time the four evolution conditions. For each evaluation, fitness is averaged over

three different starting positions. Each experiment was repeated 5 times. (Note the different scale on the bottom-right graph.

In this experiment, the population mean increased gradually but remained below 0.55 hence is not visible on the graph.)

plication is in the deployment of sensor networks for
ocean sampling, where the system offers an alterna-
tive to more traditional, hand-designed controllers (e.g.
(Leonard et al., 2007, Gerasimov et al., 2006)). Other
potential application areas include nano-scale systems
(where the CAM model may have to be implemented
with physical forces rather than computationally), and,
perhaps more likely in the shorter-term, on micro-
satellite and unmanned aerial vehicle (UAV) systems.
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Figure 6: Screen shots from the signal response task with the GRN-CAM controller. The signal was introduced at 40s. Before

the signal, the cluster’s task was to adopt a configuration with minimum area. After the signal, the task was to adopt a

configuration with maximum area while remaining locally connected.
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Figure 7: Screen shots from the differentiation task with the GRN-CAM controller. Shading indicates each robot’s dr value

(dark is high, light is low). The task of the cluster was to differentiate such that half the robots had high dr values and half

had low values. The task is successfully completed by the end of the simulation: the central robots have high dr values (dark

shading) and the peripheral robots have low dr values (light shading).


